1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
"""
Mixture of experts
==================
"""
# %%
# In this example we are going to approximate a piece wise continuous function using an expert mixture of metamodels.
#
# The metamodels will be represented by the family of functions :math:`f_k \forall \in [1, n_c]`:
#
# .. math::
# f(\vect{x}) = f_k(\vect{x})
#
# for any :math:`\vect{z} \in \textrm{Class}_k` where the :math:`n_c \in \Nset` classes are defined by the classifier.
#
# Using the supervised mode the classifier partitions the input and output spaces at once:
#
# .. math::
# \vect{z} = (\vect{x}, f(\vect{x}))
#
# The classifier is :class:`~openturns.MixtureClassifier` based on a :class:`~openturns.Mixture` distribution defined as:
#
# .. math::
# p(\vect{x}) = \sum_{i=1}^{n_c} w_i p_i(\vect{x})
#
#
# The rule to assign a point to a class is defined as follows: :math:`\vect{x}` is assigned to the class :math:`j = \operatorname{argmax}_j \log w_k p_k(\vect{z})`.
#
# The grade of :math:`\vect{x}` with respect to the class :math:`k` is :math:`\log w_k p_k(\vect{x})`.
#
#
# %%
import openturns as ot
import openturns.viewer as otv
import numpy as np
# %%
dimension = 1
# Define the piecewise model we want to rebuild
def piecewise(X):
# if x < 0.0:
# f = (x+0.75)**2-0.75**2
# else:
# f = 2.0-x**2
xarray = np.asarray(X)
return np.piecewise(
xarray,
[xarray < 0, xarray >= 0],
[lambda x: x * (x + 1.5), lambda x: 2.0 - x * x],
)
f = ot.PythonFunction(1, 1, func_sample=piecewise)
# %%
# Build a metamodel over each segment
degree = 5
samplingSize = 100
enumerateFunction = ot.LinearEnumerateFunction(dimension)
productBasis = ot.OrthogonalProductPolynomialFactory(
[ot.LegendreFactory()] * dimension, enumerateFunction
)
adaptiveStrategy = ot.FixedStrategy(
productBasis, enumerateFunction.getStrataCumulatedCardinal(degree)
)
# %%
# Interval 1: :math:`[-1.0; 0.0]`
d1 = ot.Uniform(-1.0, 0.0)
X1 = d1.getSample(samplingSize)
Y1 = f(X1)
fc1 = ot.FunctionalChaosAlgorithm(X1, Y1, d1, adaptiveStrategy)
fc1.run()
mm1 = fc1.getResult().getMetaModel()
graph = mm1.draw(-1.0, -1e-6)
view = otv.View(graph)
# %%
# Interval 2: :math:`[0.0, 1.0]`
d2 = ot.Uniform(0.0, 1.0)
X2 = d2.getSample(samplingSize)
Y2 = f(X2)
fc2 = ot.FunctionalChaosAlgorithm(X2, Y2, d2, adaptiveStrategy)
fc2.run()
mm2 = fc2.getResult().getMetaModel()
graph = mm2.draw(1e-6, 1.0)
view = otv.View(graph)
# %%
# Define the mixture
R = ot.CorrelationMatrix(2)
d1 = ot.Normal([-1.0, -1.0], [1.0] * 2, R) # segment 1
d2 = ot.Normal([1.0, 1.0], [1.0] * 2, R) # segment 2
weights = [1.0] * 2
atoms = [d1, d2]
mixture = ot.Mixture(atoms, weights)
# %%
# Create the classifier based on the mixture
classifier = ot.MixtureClassifier(mixture)
# %%
# Create local experts using the metamodels
experts = ot.Basis([mm1, mm2])
# %%
# Create a mixture of experts
evaluation = ot.ExpertMixture(experts, classifier)
moe = ot.Function(evaluation)
# %%
# Draw the mixture of experts
graph = moe.draw(-1.0, 1.0)
view = otv.View(graph)
# %%
# Display all figures
otv.View.ShowAll()
|