File: CompositeProcess.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (47 lines) | stat: -rw-r--r-- 1,594 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import openturns as ot
from matplotlib import pyplot as plt
import openturns.viewer as otv

mesh = ot.RegularGrid(-5.0, 0.1, 101)


class GaussianConvolution(ot.OpenTURNSPythonFieldFunction):
    def __init__(self):
        outputGrid = ot.RegularGrid(-1.0, 0.02, 101)
        super(GaussianConvolution, self).__init__(mesh, 1, outputGrid, 1)
        self.setInputDescription(["x"])
        self.setOutputDescription(["y"])
        self.algo_ = ot.GaussKronrod(
            20, 1.0e-4, ot.GaussKronrodRule(ot.GaussKronrodRule.G7K15)
        )

    def _exec(self, X):
        f = ot.Function(
            ot.PiecewiseLinearEvaluation(
                [x[0] for x in self.getInputMesh().getVertices()], X
            )
        )
        outputValues = ot.Sample(0, 1)
        for t in self.getOutputMesh().getVertices():
            kernel = ot.Normal(t[0], 0.05)

            def pdf(X):
                return [kernel.computePDF(X)]

            weight = ot.Function(ot.PythonFunction(1, 1, pdf))
            outputValues.add(self.algo_.integrate(weight * f, kernel.getRange()))
        return outputValues


N = 5
X = ot.GaussianProcess(ot.GeneralizedExponential([0.1], 1.0), mesh)
f = ot.FieldFunction(GaussianConvolution())
Y = ot.CompositeProcess(f, X)
x_graph = X.getSample(N).drawMarginal(0)
y_graph = Y.getSample(N).drawMarginal(0)
fig = plt.figure(figsize=(10, 4))
x_axis = fig.add_subplot(121)
y_axis = fig.add_subplot(122)
otv.View(x_graph, figure=fig, axes=[x_axis], add_legend=False)
otv.View(y_graph, figure=fig, axes=[y_axis], add_legend=False)
fig.suptitle("Composite process")