File: LARS.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (33 lines) | stat: -rw-r--r-- 1,003 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#!/usr/bin/env python

import openturns as ot
from openturns.usecases import ishigami_function
import openturns.viewer as otv

# data
im = ishigami_function.IshigamiModel()
N = 1000
g = im.model
x = im.distribution.getSample(N)
P = x.getDimension()
marginals = [im.distribution.getMarginal(i) for i in range(P)]
y = g(x)

# polynomial chaos
q, totalDegree = 0.4, 5
enumerateFunction = ot.HyperbolicAnisotropicEnumerateFunction(P, q)
productBasis = ot.OrthogonalProductPolynomialFactory(marginals, enumerateFunction)
approximationAlgorithm = ot.LeastSquaresMetaModelSelectionFactory(
    ot.LARS(), ot.CorrectedLeaveOneOut()
)
adaptiveStrategy = ot.FixedStrategy(
    productBasis, enumerateFunction.getStrataCumulatedCardinal(totalDegree)
)
projectionStrategy = ot.LeastSquaresStrategy(approximationAlgorithm)
algo = ot.FunctionalChaosAlgorithm(
    x, y, im.distribution, adaptiveStrategy, projectionStrategy
)
algo.run()
result = algo.getResult()
graph = result.drawSelectionHistory()
otv.View(graph)