1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
.. _spearman_coefficient:
Spearman correlation coefficient
--------------------------------
The Spearman rank correlation coefficient measures how strongly
two random variables with finite variance are correlated. Spearman's correlation assesses monotonic
relationships between both variables.
Let :math:`(X,Y)` be two random variables which CDF are denoted by :math:`F_X` and :math:`F_Y`.
Spearman’s rank correlation coefficient :math:`\rho_S(X,Y)` is defined by:
.. math::
\rho_S(X,Y) = \dfrac{\Cov{F_X(X),F_Y(Y)}}{\sqrt{\Var{F_X(X)}\Var{F_Y(Y)}}}
where :math:`\Cov{.}` is the covariance operator and
:math:`F_X` and :math:`F_Y` are the respective CDF of :math:`X` and :math:`Y`.
The Spearman correlation between two variables is equal to the
:ref:`Pearson correlation coefficient <pearson_coefficient>` between the rank values of the variables:
.. math::
\rho_S(X,Y) = \rho_P(F_X(X), F_Y(Y))
If :math:`C` is the CDF of the copula of the random vector :math:`(X,Y)`, then we get:
.. math::
\rho_S(X,Y) = \rho_P(F_X(X),F_Y(Y)) = 12 \iint_{[0,1]^2} C(u,v)\,du\,dv - 3
which shows that the Spearman correlation is linked to the copula only.
Let :math:`((x_1, y_1), \dots, (x_\sampleSize, y_\sampleSize))` be a sample generated
by the bivariate random vector :math:`(X,Y)`.
We denote by :math:`(r_1, s_1), \dots, (r_\sampleSize, s_\sampleSize)` the rank sample,
which means that :math:`r_k` is the rank of the value :math:`x_k` within the sample
:math:`(x_1, \dots, x_\sampleSize)` and :math:`s_k` is the rank of the value :math:`y_k` within the
sample :math:`(y_1, \dots, y_\sampleSize)`. The estimator :math:`\hat{\rho}_S(X,Y)` is equal to the
estimator :math:`\hat{\rho}_P(X,Y)` computed
on the rank sample :math:`(r_1, s_1), \dots, (r_\sampleSize, s_\sampleSize)`. It is estimated as follows:
.. math::
:label: SpearmanEstim
\hat{\rho}_S(X,Y) = \dfrac{\sum_{k=1}^\sampleSize (r_k- \bar{r})(s_k- \bar{s})}
{\sqrt{\sum_{k=1}^\sampleSize(r_k- \bar{r})^2\sum_{k=1}^\sampleSize(s_k- \bar{s})^2}}
where :math:`\bar{r} = \dfrac{1}{\sampleSize} \sum_{k=1}^\sampleSize r_k` and
:math:`\bar{s} = \dfrac{1}{\sampleSize} \sum_{k=1}^\sampleSize s_k` are the empirical mean rank of each sample.
We sum up some interesting features of the coefficient:
- The Spearman correlation coefficient takes values between -1 and 1.
- If :math:`|\rho_S(X,Y)|=1` then there exists a monotonic function
:math:`\varphi` such that :math:`Y=\varphi(X)`.
- The closer :math:`|\rho_S(X,Y)|` is to 1, the stronger the indication is
that a monotonic relationship exists between :math:`X` and
:math:`Y`. The sign of the Spearman coefficient indicates if the two
variables increase or decrease in the same direction (positive
coefficient) or in opposite directions (negative coefficient).
- If :math:`X` and :math:`Y` are independent, then :math:`\rho_S(X,Y)=0`.
- If :math:`\rho_S(X,Y)=0`, it does not imply the independence of the variables
:math:`X` and :math:`Y`. It may only means that the relation between both variables
is not monotonic.
.. plot::
import openturns as ot
import openturns.viewer as otv
N = 20
ot.RandomGenerator.SetSeed(10)
x = ot.Uniform(0.0, 10.0).getSample(N)
f = ot.SymbolicFunction(['x'], ['x^2'])
y = f(x) + ot.Normal(0.0, 5.0).getSample(N)
graph = f.draw(0.0, 10.0)
graph.setTitle('There is a monotonic relationship between U and V:\nSpearman\'s coefficient is a relevant measure of dependency...')
graph.setXTitle('u')
graph.setYTitle('v')
cloud = ot.Cloud(x, y)
cloud.setPointStyle('circle')
cloud.setColor('orange')
graph.add(cloud)
otv.View(graph)
.. plot::
import openturns as ot
import openturns.viewer as otv
N = 20
ot.RandomGenerator.SetSeed(10)
x = ot.Uniform(0.0, 10.0).getSample(N)
f = ot.SymbolicFunction(['x'], ['5*x+10'])
y = f(x) + ot.Normal(0.0, 5.0).getSample(N)
graph = f.draw(0.0, 10.0)
graph.setTitle('... because the rank transformation turns any monotonic trend\ninto a linear relation for which Pearson\'s correlation is relevant')
graph.setXTitle('u')
graph.setYTitle('v')
cloud = ot.Cloud(x, y)
cloud.setPointStyle('circle')
cloud.setColor('orange')
graph.add(cloud)
otv.View(graph)
.. plot::
import openturns as ot
import openturns.viewer as otv
N = 20
ot.RandomGenerator.SetSeed(10)
x = ot.Uniform(0.0, 10.0).getSample(N)
f = ot.SymbolicFunction(['x'], ['5'])
y = ot.Uniform(0.0, 10.0).getSample(N)
graph = f.draw(0.0, 10.0)
graph.setTitle('nSpearman\'s coefficient estimate is close to zero\nbecause U and V are independent')
graph.setXTitle('u')
graph.setYTitle('v')
cloud = ot.Cloud(x, y)
cloud.setPointStyle('circle')
cloud.setColor('orange')
graph.add(cloud)
otv.View(graph)
.. plot::
import openturns as ot
import openturns.viewer as otv
N = 20
ot.RandomGenerator.SetSeed(10)
x = ot.Uniform(0.0, 10.0).getSample(N)
f = ot.SymbolicFunction(['x'], ['30*sin(x)'])
y = f(x) + ot.Normal(0.0, 5.0).getSample(N)
graph = f.draw(0.0, 10.0)
graph.setTitle('Spearman\'s coefficient estimate is quite close to zero\neven though U and V are not independent')
graph.setXTitle('u')
graph.setYTitle('v')
cloud = ot.Cloud(x, y)
cloud.setPointStyle('circle')
cloud.setColor('orange')
graph.add(cloud)
otv.View(graph)
Spearman’s coefficient is often referred to as the rank correlation
coefficient.
.. topic:: API:
- See :class:`~openturns.CorrelationAnalysis` class method :py:meth:`~openturns.CorrelationAnalysis.computeSpearmanCorrelation`
- See :class:`~openturns.Sample` class method :py:meth:`~openturns.Sample.computeSpearmanCorrelation`
.. topic:: Examples:
- See :doc:`/auto_data_analysis/sample_analysis/plot_sample_correlation`
.. topic:: References:
- [saporta1990]_
- [dixon1983]_
- [nisthandbook]_
- [dagostino1986]_
- [bhattacharyya1997]_
- [sprent2001]_
- [burnham2002]_
|