1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
.. _field_function:
Field functions
---------------
A field function :math:`f_{dyn}:\cD \times \Rset^{\inputDim} \rightarrow \cD' \times \Rset^q`
where :math:`\cD \in \Rset^n` and :math:`\cD' \in \Rset^p` is defined
by:
.. math::
:label: dynFct
\begin{aligned}
f_{dyn}(\vect{t}, \vect{x}) = (t'(\vect{t}), v'(\vect{t}, \vect{x}))
\end{aligned}
with :math:`t': \cD \rightarrow \cD'` and
:math:`v': \cD \times \Rset^{\inputDim} \rightarrow \Rset^q`.
A field function :math:`f_{dyn}` transforms a multivariate
stochastic process:
.. math::
\begin{aligned}
X: \Omega \times \cD \rightarrow \Rset^{\inputDim}\end{aligned}
where :math:`\cD \in \Rset^n` is discretized according to the
:math:`\cM` into the multivariate stochastic process:
.. math::
\begin{aligned}
Y=f_{dyn}(X)\end{aligned}
such that:
.. math::
\begin{aligned}
Y: \Omega \times \cD' \rightarrow \Rset^q\end{aligned}
where the mesh :math:`\cD' \in \Rset^p` is discretized according to
the :math:`\cM'`.
A field function :math:`f_{dyn}` also acts on fields and produces
fields of possibly different dimension (:math:`q\neq \inputDim`) and mesh
(:math:`\cD \neq \cD'` or :math:`\cM \neq \cM'`).
Value function
~~~~~~~~~~~~~~
A value function
:math:`f_{spat}: \cD \times \Rset^{\inputDim} \rightarrow \cD \times \Rset^q` is
a particular field function that leaves the mesh of a
field invariant and can be defined using a function
:math:`g : \Rset^{\inputDim} \rightarrow \Rset^q` such that:
.. math::
:label: spatFunc
\begin{aligned}
f_{spat}(\vect{t}, \vect{x})=(\vect{t}, g(\vect{x}))\end{aligned}
Let us note that the input dimension of :math:`f_{spat}` is still
:math:`d`, the dimension of :math:`\vect{x}`. Its output dimension is
equal to :math:`q`.
The creation of a value function requires the
function :math:`g` and the integer :math:`n`: the
dimension of the vertices of the mesh :math:`\cM`. These data are
required to test the compatibility of the dimensions when a composite
process is created using the value function.
Vertex value function
~~~~~~~~~~~~~~~~~~~~~
A vertex-value function
:math:`f_{temp}: \cD \times \Rset^{\inputDim} \rightarrow \cD \times \Rset^q` is
a particular field function that leaves the mesh of a
field invariant and is defined by a function
:math:`h : \Rset^n \times \Rset^{\inputDim} \rightarrow \Rset^q` such that:
.. math::
:label: tempFunc
\begin{aligned}
f_{temp}(\vect{t}, \vect{x})=(\vect{t}, h(\vect{t},\vect{x}))\end{aligned}
Let us note that the input dimension of :math:`f_{temp}` is still
:math:`d`, the dimension of :math:`\vect{x}`. Its output dimension is
equal to :math:`q`.
.. topic:: API:
- See :class:`~openturns.ValueFunction`
- See :class:`~openturns.VertexValueFunction`
.. topic:: Examples:
- See :doc:`/auto_functional_modeling/field_functions/plot_value_function`
- See :doc:`/auto_functional_modeling/field_functions/plot_vertexvalue_function`
- See :doc:`/auto_surrogate_modeling/fields_surrogate_models/plot_fieldfunction_metamodel`
|