File: use_case_beam.rst

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (82 lines) | stat: -rw-r--r-- 2,022 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
.. _use-case-stressed-beam:

A simple stressed beam
======================

We consider a simple beam stressed by a traction load F at both sides.



.. figure:: ../_static/axial-stressed-beam.png
    :align: center
    :alt: use case geometry
    :width: 50%

    Beam geometry


The geometry is supposed to be deterministic; the diameter D is equal to:

.. math:: D=0.02 \textrm{ (m)}


By definition, the yield stress is the load divided by the surface. Since the surface is :math:`\pi D^2/4`, the stress is:

.. math:: S=\frac{F}{ \pi D^2/4}

Failure occurs when the beam plastifies, i.e. when the axial stress gets larger than the yield stress:

.. math:: R - \frac{F}{ \pi D^2/4} \leq 0

where :math:`R` is the strength.

Therefore, the limit state function :math:`G` is:

.. math:: G(R,F) = R - \frac{F}{\pi D^2/4},

for any :math:`R,F \in \mathbb{R}`.

The value of the parameter :math:`D` is such that:

.. math:: D^2/4 = 10^{-4},

which leads to the equation:

.. math:: G(R,F) = R - \frac{F}{10^{-4} \pi}.

We consider the following distribution functions.


========  ================================================================================
Variable  Distribution
========  ================================================================================
R         LogNormal(  :math:`\mu_R= 3 \times 10^6`,  :math:`\sigma_R=3  \times 10^5` ) [Pa]
F         Normal(     :math:`\mu_F=750` ,  :math:`\sigma_F=50`)  [N]
========  ================================================================================


 where :math:`\mu_R=E(R)` and :math:`\sigma_R^2=V(R)` are the mean and the variance of :math:`R`.

The failure probability is:

.. math:: P_f = \Prob{G(R,F) \leq 0}.


The exact :math:`P_f` is

.. math:: P_f = 0.02920.


API documentation
-----------------

.. currentmodule:: openturns.usecases.stressed_beam

.. autoclass:: AxialStressedBeam
    :noindex:

Examples based on this use case
-------------------------------

.. minigallery:: openturns.usecases.stressed_beam.AxialStressedBeam