1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
.. _use-case-flood-model:
A flood model
=============
Introduction
------------
The following figure presents a dyke protecting industrial facilities.
When the river level exceeds the dyke height, flooding occurs.
The model is based on a crude simplification of the 1D hydrodynamical equations of Saint-Venant
under the assumptions of uniform and constant flow rate and large rectangular sections.
This model was first introduced in [deRocquigny2006]_, and then used in [Limbourg2010]_,
[deRocquigny2012]_, [iooss2015]_, [baudin2015]_.
.. figure:: ../_static/flooding_section.png
:align: center
:alt: flooding section
:width: 50%
**Figure 1.** Flooding section.
Height independent random variables are considered:
- :math:`Q`: flow rate :math:`[m^3 s^{-1}]`;
- :math:`K_s`: Strickler :math:`[m^{1/3} s^{-1}]`;
- :math:`Z_v`: downstream height :math:`[m]`;
- :math:`Z_m`: upstream height :math:`[m]`;
- :math:`B`: river width :math:`[m]`;
- :math:`L`: river length :math:`[m]`;
- :math:`Z_b`: altitude of the river banks :math:`[m]`;
- :math:`H_d`: height of the dyke :math:`[m]`.
When the Strickler coefficient increases, the riverbed generates less friction.
The altitude of the dyke is:
.. math::
Z_d = Z_b + H_d
The slope :math:`\alpha` of the river is assumed to be close to zero, which implies:
.. math::
\alpha = \frac{Z_m - Z_v}{L},
if :math:`Z_m \geq Z_v`.
The water depth is ([deRocquigny2012]_ eq. 3.2 page 79) :
.. math::
H = \left(\frac{Q}{K_s B \sqrt{\alpha}}\right)^{0.6},
for any :math:`K_s, Q>0`.
The flood altitude is:
.. math::
Z_c = H + Z_v.
The altitude of the surface of the water is greater than the altitude of
the top of the dyke (i.e. there is a flood) if ([deRocquigny2012]_ eq. 3.3 page 79):
.. math::
S = Z_c - Z_d
is greater than zero.
The following figure presents the model with more details.
.. figure:: ../_static/flooding_section_detail.png
:align: center
:alt: flooding section details
:width: 50%
**Figure 2.** Flooding section detail.
The cost :math:`C` can be decomposed into the building of the dyke and
the cost of the flood ([iooss2015]_ eq. 5.3 page 103):
.. math::
C = C_d + C_s
where the cost of the dyke is:
.. math::
C_d
=\begin{cases}
\frac{8}{20} & \textrm{if } H_d < 8 \\
\frac{H_d}{20} & \textrm{otherwise},
\end{cases}
and the cost of the flood is:
.. math::
C_s
=\begin{cases}
1 - 0.8 \exp(-\frac{1000}{S^4}) & \textrm{if } S < 0, \\
1 & \textrm{otherwise}.
\end{cases}
We assume that the 8 inputs have the following distributions.
We consider 2 different set of hypotheses.
- In the hypothesis where :math:`H_d` is low, then its distribution
is uniform in the interval :math:`[2, 4]`.
- In the hypothesis where :math:`H_d` is high, then its distribution
is uniform in the interval :math:`[7, 9]`.
This is the hypothesis used in [iooss2015]_.
+----------------+-----------------------------------------------+
| Input variable | Distribution |
+================+===============================================+
| :math:`Q` | Gumbel(mode=1013, scale=558), :math:`Q` > 0 |
+----------------+-----------------------------------------------+
| :math:`K_s` | Normal(mu=30.0, sigma=7.5), :math:`K_s` > 0 |
+----------------+-----------------------------------------------+
| :math:`Z_v` | Uniform(a=49, b=51) |
+----------------+-----------------------------------------------+
| :math:`Z_m` | Uniform(a=54, b=56) |
+----------------+-----------------------------------------------+
| :math:`B` | Triangular(min=295, mode=300, max=305) |
+----------------+-----------------------------------------------+
| :math:`L` | Triangular(min=4990, mode=5000, max=5010) |
+----------------+-----------------------------------------------+
| :math:`Z_b` | Triangular(min=55, mode=55.5, max=56) |
+----------------+-----------------------------------------------+
| :math:`H_d` | Uniform(min=2, max=4) |
+----------------+-----------------------------------------------+
**Table 1.** Distribution of the input random variables in the scenario where :math:`H_d` is low.
+----------------+-----------------------------------------------+
| Input variable | Distribution |
+================+===============================================+
| :math:`H_d` | Uniform(min=7, max=9) |
+----------------+-----------------------------------------------+
**Table 2.** Distribution of the input random variables in the scenario where :math:`H_d` is high.
The other variables have the same distribution.
Moreover, we assume that the input random variables are independent.
We want to estimate the flood probability:
.. math::
P_f = \Prob{S > 0}.
The results depend on the hypothesis chosen for :math:`H_d`.
- If :math:`H_d` is low, then :math:`P_f = 7.3 \times 10^{-4}`
(with coefficient of variation lower than 0.01).
In this case, the model is mostly additive.
- If :math:`H_d` is high, then :math:`P_f = 7.6 \times 10^{-5}`
(with coefficient of variation lower than 0.01).
In this case, the model for :math:`C` has interactions, mainly for :math:`Q`,
:math:`K_s`, :math:`Z_v` and :math:`H_d`.
The model is mostly additive for :math:`H` and :math:`S`.
Analysis of the model
---------------------
The next figure presents the river height :math:`H` depending on the flowrate
:math:`Q` when the other parameters are set to their mean values.
We see that the river height as a power model shape which is a property
of the Manning-Strickler model.
.. plot::
import openturns as ot
import openturns.viewer as otv
from openturns.usecases import flood_model
fm = flood_model.FloodModel()
heightInputDistribution, heightModel = fm.getHeightModel()
# %%
# Set all inputs to constants, except Q
indices = [1, 2, 3]
referencePoint = [heightInputDistribution.getMarginal(i).getMean()[0] for i in indices]
heightModelvsQ = ot.ParametricFunction(heightModel, indices, referencePoint)
qRange = fm.Q.getRange()
qMin = qRange.getLowerBound()[0]
qMax = qRange.getUpperBound()[0]
graph = heightModelvsQ.draw(qMin, qMax, 200)
otv.View(graph)
The next figure plots the cost :math:`C` depending on the overflow :math:`S`
in the default scenario where the dyke height is low.
It makes use of a Quasi Monte Carlo sample of size :math:`n = 10000`.
.. plot::
import openturns as ot
import openturns.viewer as otv
from openturns.usecases import flood_model
fm = flood_model.FloodModel()
sampleSize = 10000
experiment = ot.LowDiscrepancyExperiment(ot.SobolSequence(), fm.distribution, sampleSize, True)
inputSample = experiment.generate()
outputSample = fm.model(inputSample)
graph = ot.Graph("Scenario: dyke is low", "S", "C", True)
cloud = ot.Cloud(outputSample[:, 1], outputSample[:, 2])
graph.add(cloud)
otv.View(graph)
The next figure plots the cost :math:`C` depending on the dyke height :math:`H_d`
when the other parameters are set to their mean values.
We notice that the cost first decreases because the flooding cost decreases
when the dyke height increases.
Then the cost increases because cost of the dyke increases when the
dyke height increases.
.. plot::
import openturns as ot
import openturns.viewer as otv
from openturns.usecases import flood_model
fm = flood_model.FloodModel()
# Set all inputs to constants, except Hd
indices = [0, 1, 2, 3, 4, 5, 6]
referencePoint = [fm.distribution.getMarginal(i).getMean()[0] for i in indices]
costModelvsHd = ot.ParametricFunction(fm.model.getMarginal(2), indices, referencePoint)
hdMin = 0.0
hdMax = 12.0
graph = costModelvsHd.draw(hdMin, hdMax, 200)
otv.View(graph)
The next figure presents the distribution of the three outputs in the
default scenario where the height of the dyke is low.
It is based on a Monte-Carlo sample of size :math:`n = 1000` and uses
the histogram to estimate the density of the output of the model.
.. plot::
import openturns as ot
import openturns.viewer as otv
from matplotlib import pyplot as plt
from openturns.usecases import flood_model
fm = flood_model.FloodModel()
outputDimension = fm.model.getOutputDimension()
# Make a plot
sampleSize = 1000
inputSample = fm.distribution.getSample(sampleSize)
outputSample = fm.model(inputSample)
grid = ot.GridLayout(1, outputDimension)
for i in range(outputDimension):
marginalOutputSample = outputSample.getMarginal(i)
graph = ot.HistogramFactory().build(marginalOutputSample).drawPDF()
graph.setLegends([""])
if i > 0:
graph.setYTitle("")
grid.setGraph(0, i, graph)
grid.setTitle("Scenario: dyke is low")
_ = otv.View(grid, figure_kw={"figsize": (8.0, 2.5)})
plt.subplots_adjust(wspace=0.4, top=0.8)
The next figure presents the distribution of the three outputs in the
scenario where the height of the dyke is high.
.. plot::
import openturns as ot
import openturns.viewer as otv
from matplotlib import pyplot as plt
from openturns.usecases import flood_model
fm = flood_model.FloodModel(distributionHdLow=False)
outputDimension = fm.model.getOutputDimension()
# Make a plot
sampleSize = 1000
inputSample = fm.distribution.getSample(sampleSize)
outputSample = fm.model(inputSample)
grid = ot.GridLayout(1, outputDimension)
for i in range(outputDimension):
marginalOutputSample = outputSample.getMarginal(i)
graph = ot.HistogramFactory().build(marginalOutputSample).drawPDF()
graph.setLegends([""])
if i > 0:
graph.setYTitle("")
grid.setGraph(0, i, graph)
grid.setTitle("Default scenario: dyke is high")
_ = otv.View(grid, figure_kw={"figsize": (8.0, 2.5)})
plt.subplots_adjust(wspace=0.4, top=0.8)
The next figure presents the Sobol' indices of the three outputs in the
scenario where the height of the dyke is low.
We estimate the Sobol' indices from sampling, using a root sample
size equal to :math:`n = 2^{13}` and the Sobol' low discrepancy sequence.
.. plot::
import openturns as ot
import openturns.viewer as otv
from matplotlib import pyplot as plt
from openturns.usecases import flood_model
fm = flood_model.FloodModel()
outputDimension = fm.model.getOutputDimension()
sampleSize = 2**13
sie = ot.SobolIndicesExperiment(fm.distribution, sampleSize)
inputDesign = sie.generate()
input_names = fm.distribution.getDescription()
inputDesign.setDescription(input_names)
inputDesign.getSize()
outputDesign = fm.model(inputDesign)
# Make a plot
grid = ot.GridLayout(outputDimension, 1)
grid.setTitle(f"n = {sampleSize}")
for i in range(outputDimension):
marginalOutputSample = outputDesign.getMarginal(i)
sensitivityAnalysis = ot.SaltelliSensitivityAlgorithm(
inputDesign, marginalOutputSample, sampleSize
)
graph = sensitivityAnalysis.draw()
graph.setTitle(marginalOutputSample.getDescription()[0])
grid.setGraph(i, 0, graph)
grid.setTitle("Default scenario: dyke is low")
view = otv.View(
grid,
figure_kw={"figsize": (7.0, 9.0)},
legend_kw={"bbox_to_anchor": (1.0, 1.0), "loc": "upper left"},
)
plt.subplots_adjust(wspace=0.4, hspace=0.5, right=0.7)
The next figure presents the Sobol' indices of the three outputs in the
scenario where the height of the dyke is high.
.. plot::
import openturns as ot
import openturns.viewer as otv
from matplotlib import pyplot as plt
from openturns.usecases import flood_model
fm = flood_model.FloodModel(distributionHdLow=False)
outputDimension = fm.model.getOutputDimension()
sampleSize = 2**13
sie = ot.SobolIndicesExperiment(fm.distribution, sampleSize)
inputDesign = sie.generate()
input_names = fm.distribution.getDescription()
inputDesign.setDescription(input_names)
inputDesign.getSize()
outputDesign = fm.model(inputDesign)
# Make a plot
grid = ot.GridLayout(outputDimension, 1)
grid.setTitle(f"n = {sampleSize}")
for i in range(outputDimension):
marginalOutputSample = outputDesign.getMarginal(i)
sensitivityAnalysis = ot.SaltelliSensitivityAlgorithm(
inputDesign, marginalOutputSample, sampleSize
)
graph = sensitivityAnalysis.draw()
graph.setTitle(marginalOutputSample.getDescription()[0])
grid.setGraph(i, 0, graph)
grid.setTitle("Scenario: dyke is high")
view = otv.View(
grid,
figure_kw={"figsize": (7.0, 9.0)},
legend_kw={"bbox_to_anchor": (1.0, 1.0), "loc": "upper left"},
)
plt.subplots_adjust(wspace=0.4, hspace=0.5, right=0.7)
The next figure presents the Sobol' indices of the height model output
with four inputs :math:`(Q, K_s, Z_v, Z_m)` only.
This is a simpler model that leads to a simplified analysis.
.. plot::
import openturns as ot
import openturns.viewer as otv
from matplotlib import pyplot as plt
from openturns.usecases import flood_model
fm = flood_model.FloodModel()
heightInputDistribution, heightModel = fm.getHeightModel()
outputDimension = heightModel.getOutputDimension()
sampleSize = 2**13
sie = ot.SobolIndicesExperiment(heightInputDistribution, sampleSize)
inputDesign = sie.generate()
input_names = heightInputDistribution.getDescription()
inputDesign.setDescription(input_names)
inputDesign.getSize()
outputDesign = heightModel(inputDesign)
# Make a plot
sensitivityAnalysis = ot.SaltelliSensitivityAlgorithm(
inputDesign, outputDesign, sampleSize
)
graph = sensitivityAnalysis.draw()
graph.setTitle("Height model with (Q, K_s, Z_v, Z_m) as inputs")
graph.setLegendCorner([1.0, 1.0])
graph.setLegendPosition('upper left')
view = otv.View(
graph,
figure_kw={"figsize": (6.0, 4.0)},
)
plt.subplots_adjust(right=0.7)
Analysis of the calibration problem
-----------------------------------
In this section, we analyse why calibrating the parameters of this model
may raise some difficulties.
First, the slope :math:`\alpha` only depends on the difference :math:`Z_m - Z_v`.
This is why :math:`Z_v` and :math:`Z_m` cannot be identified at the same time.
In algebraic terms, there is an infinite number of couples :math:`(Z_v, Z_m)` which
generate the same difference :math:`Z_m - Z_v`.
Second, the denominator of the expression of :math:`H` involves the product
:math:`K_s B \sqrt{\alpha}`.
In algebraic terms, there is an infinite number of couples :math:`(K_s, \alpha)` which
generate the same product :math:`K_s \sqrt{\alpha}`.
This is why either :math:`K_s` or :math:`\alpha` can be identified separately,
but not at the same time.
This shows that only one parameter can be identified.
Hence, calibrating this model requires some regularization which can be done
by Bayesian methods.
References
----------
* [deRocquigny2006]_
* [Limbourg2010]_
* [deRocquigny2012]_
* [iooss2015]_
* [baudin2015]_
API documentation
-----------------
.. currentmodule:: openturns.usecases.flood_model
.. autoclass:: FloodModel
:noindex:
Examples based on this use case
-------------------------------
.. minigallery:: openturns.usecases.flood_model.FloodModel
|