1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
.. _use-case-viscous-fall:
A viscous free fall example
===========================
Introduction
-------------
We consider an object inside a vertical cylinder which contains a viscous fluid.
The fluid generates a drag force which limits the speed of the solid and we assume that the force depends linearily on the object speed:
.. math::
m \frac{dv}{dt} = - m g - c v
for any :math:`t \in [0, t_{max}]` where:
- :math:`v` is the speed :math:`[m/s]`,
- :math:`t` is the time :math:`[s]`,
- :math:`t_{max}` is the maximum time :math:`[s]`,
- :math:`g = 9.81` is the gravitational acceleration :math:`[m.s^{-2}]`,
- :math:`m` is the mass :math:`[kg]`,
- :math:`c` is the linear drag coefficient :math:`[kg.s^{-1}]`.
The exact solution of the previous differential equation is:
.. math::
z(t) = z_0 + v_{inf} t + \tau (v_0 - v_{inf})\left(1 - e^{-\frac{t}{\tau}}\right)
for any :math:`t \in [0, t_{max}]`
where:
- :math:`z` is the altitude above the surface :math:`[m]`,
- :math:`z_0` is the initial altitude :math:`[m]`,
- :math:`v_0` is the initial speed (upward) :math:`[m.s^{-1}]`,
- :math:`v_{inf}` is the limit speed :math:`[m.s^{-1}]`:
.. math::
v_{inf}=-\frac{m g}{c}
- :math:`\tau` is time caracteristic :math:`[s]`:
.. math::
\tau=\frac{m}{c}.
The stationnary speed limit at infinite time is equal to :math:`v_{inf}`:
.. math::
\lim_{t\rightarrow+\infty} v(t)= v_{inf}.
When there is no drag, i.e. when :math:`c=0`, the trajectory depends quadratically on :math:`t`:
.. math::
z(t) = z_0 + v_0 t -g t^2
for any :math:`t \in [0, t_{max}]`.
Furthermore when the solid touches the ground, we ensure that the altitude remains nonnegative i.e. the final altitude is:
.. math::
y(t) = \max(z(t),0)
for any :math:`t \in [0, t_{max}]`.
Probabilistic model
-------------------
The parameters :math:`z_0`, :math:`v_0`, :math:`m` and :math:`c` are probabilistic:
- :math:`z_0 \sim \mathcal{U}(100, 150)`,
- :math:`v_0 \sim \mathcal{N}(55, 10)`,
- :math:`m \sim \mathcal{N}(80, 8)`,
- :math:`c \sim \mathcal{U}(0, 30)`.
References
----------
* Steven C. Chapra. Applied numerical methods with Matlab for engineers and scientists, Third edition. 2012. Chapter 7, "Optimization", p.182.
API documentation
-----------------
.. currentmodule:: openturns.usecases.viscous_free_fall
.. autoclass:: ViscousFreeFall
:noindex:
Examples based on this use case
-------------------------------
.. minigallery:: openturns.usecases.viscous_free_fall.ViscousFreeFall
|