File: t_AggregatedProcess_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (29 lines) | stat: -rw-r--r-- 1,655 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
myProcess= AggregatedProcess([WhiteNoise(Normal(mu = 0, sigma = 1))])
a realization=      [ t         X0        ]
 0 : [  0         0.608202 ]
 1 : [  0.1      -1.26617  ]
 2 : [  0.2      -0.438266 ]
 3 : [  0.3       1.20548  ]
 4 : [  0.4      -2.18139  ]
 5 : [  0.5       0.350042 ]
 6 : [  0.6      -0.355007 ]
 7 : [  0.7       1.43725  ]
 8 : [  0.8       0.810668 ]
 9 : [  0.9       0.793156 ]
10 : [  1        -0.470526 ]
a marginal process= WhiteNoise(Normal(mu = 0, sigma = 1))
myProcess= AggregatedProcess([WhiteNoise(Normal(mu = 0, sigma = 1)),ARMA(X_{0,t} = E_{0,t}, E_t ~ Normal(mu = 0, sigma = 1)),GaussianProcess(trend=[x0]->[0], covariance=ExponentialModel(scale=[1], amplitude=[1], no spatial correlation))])
a realization=      [ t          X0         X0         y0         ]
 0 : [  0         -1.28289    0.351418  -0.0436123 ]
 1 : [  0.1       -1.31178    1.78236    0.190168  ]
 2 : [  0.2       -0.0907838  0.0702074  0.299777  ]
 3 : [  0.3        0.995793  -0.781366   0.444838  ]
 4 : [  0.4       -0.139453  -0.721533   0.195966  ]
 5 : [  0.5       -0.560206  -0.241223   0.0142559 ]
 6 : [  0.6        0.44549   -1.78796   -0.307618  ]
 7 : [  0.7        0.322925   0.40136   -0.16853   ]
 8 : [  0.8        0.445785   1.36783    0.685721  ]
 9 : [  0.9       -1.03808    1.00434    0.33466   ]
10 : [  1         -0.856712   0.741548   1.09293   ]
a marginal process= ARMA(X_{0,t} = E_{0,t}, E_t ~ Normal(mu = 0, sigma = 1))
another marginal process= AggregatedProcess([WhiteNoise(Normal(mu = 0, sigma = 1)),GaussianProcess(trend=[x0]->[0], covariance=ExponentialModel(scale=[1], amplitude=[1], no spatial correlation))])