1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
# We create a numerical math function
myFunction = ot.SymbolicFunction(["E", "F", "L", "I"], ["-F*L^3/(3*E*I)"])
dim = myFunction.getInputDimension()
# We create a normal distribution point of dimension 1
mean = [50.0, 1.0, 10.0, 5.0]
sigma = ot.Point(dim, 1.0)
R = ot.IdentityMatrix(dim)
myDistribution = ot.Normal(mean, sigma, R)
# We create a 'usual' RandomVector from the Distribution
vect = ot.RandomVector(myDistribution)
# We create a composite random vector
output = ot.CompositeRandomVector(myFunction, vect)
# We create an Event from this RandomVector
myEvent = ot.ThresholdEvent(output, ot.Less(), -3.0)
# We create an AnalyticalResult based on fictive results
result = ot.AnalyticalResult(sigma, myEvent, False)
print("result=", result)
print("standard space design point=", result.getStandardSpaceDesignPoint())
print("physical space design point=", result.getPhysicalSpaceDesignPoint())
print(
"is standard point origin in failure space? ",
result.getIsStandardPointOriginInFailureSpace(),
)
print("importance factors=", result.getImportanceFactors())
print(
"importance factors(classical)=",
result.getImportanceFactors(ot.AnalyticalResult.CLASSICAL),
)
print(
"importance factors(physical) =",
result.getImportanceFactors(ot.AnalyticalResult.PHYSICAL),
)
print("Hasofer reliability index=%.5f" % result.getHasoferReliabilityIndex())
print("graph importance factors=", result.drawImportanceFactors())
print("graph sensitivity=", result.drawHasoferReliabilityIndexSensitivity())
|