1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
|
Distribution class=Arcsine name=Arcsine dimension=1 a=5.2 b=11.6
Distribution Arcsine(a = 5.2, b = 11.6)
Mean= class=Point name=Unnamed dimension=1 values=[8.4]
Covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[5.12]
Elliptical = True
oneRealization= class=Point name=Unnamed dimension=1 values=[9.66973]
Point= class=Point name=Unnamed dimension=1 values=[9.1]
ddf = class=Point name=Unnamed dimension=1 values=[0.00731882]
log pdf=-2.283364
pdf =0.101941
cdf=0.570198
ccdf=0.429802
pdf gradient = class=Point name=Unnamed dimension=2 values=[0.0130693,-0.0203881]
cdf gradient = class=Point name=Unnamed dimension=2 values=[-0.0398206,-0.0621201]
quantile= class=Point name=Unnamed dimension=1 values=[11.5606]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[5.2394]
Survival(inverseSurvival)=0.950000
entropy=1.614734
Minimum volume interval= [5.20986, 11.5901]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 2.30479} with f=
MinimumVolumeLevelSetEvaluation(Arcsine(a = 5.2, b = 11.6))
beta= [0.0997794]
Bilateral confidence interval= [5.20986, 11.5901]
beta= [0.95]
Unilateral confidence interval (lower tail)= [5.2, 11.5606]
beta= [0.95]
Unilateral confidence interval (upper tail)= [5.2394, 11.6]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[8.4]
standard deviation= class=Point name=Unnamed dimension=1 values=[2.26274]
skewness= class=Point name=Unnamed dimension=1 values=[0]
kurtosis= class=Point name=Unnamed dimension=1 values=[1.5]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[5.12]
parameters= [class=PointWithDescription name=X0 dimension=2 description=[a,b] values=[5.2,11.6]]
Standard representative= Arcsine(a = -1, b = 1)
|