File: t_Arcsine_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (37 lines) | stat: -rw-r--r-- 1,888 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Distribution  class=Arcsine name=Arcsine dimension=1 a=5.2 b=11.6
Distribution  Arcsine(a = 5.2, b = 11.6)
Mean=  class=Point name=Unnamed dimension=1 values=[8.4]
Covariance=  class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[5.12]
Elliptical =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[9.66973]
Point=  class=Point name=Unnamed dimension=1 values=[9.1]
ddf     = class=Point name=Unnamed dimension=1 values=[0.00731882]
log pdf=-2.283364
pdf     =0.101941
cdf=0.570198
ccdf=0.429802
pdf gradient     = class=Point name=Unnamed dimension=2 values=[0.0130693,-0.0203881]
cdf gradient     = class=Point name=Unnamed dimension=2 values=[-0.0398206,-0.0621201]
quantile= class=Point name=Unnamed dimension=1 values=[11.5606]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[5.2394]
Survival(inverseSurvival)=0.950000
entropy=1.614734
Minimum volume interval= [5.20986, 11.5901]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 2.30479} with f=
MinimumVolumeLevelSetEvaluation(Arcsine(a = 5.2, b = 11.6))
beta= [0.0997794]
Bilateral confidence interval= [5.20986, 11.5901]
beta= [0.95]
Unilateral confidence interval (lower tail)= [5.2, 11.5606]
beta= [0.95]
Unilateral confidence interval (upper tail)= [5.2394, 11.6]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[8.4]
standard deviation= class=Point name=Unnamed dimension=1 values=[2.26274]
skewness= class=Point name=Unnamed dimension=1 values=[0]
kurtosis= class=Point name=Unnamed dimension=1 values=[1.5]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[5.12]
parameters= [class=PointWithDescription name=X0 dimension=2 description=[a,b] values=[5.2,11.6]]
Standard representative= Arcsine(a = -1, b = 1)