1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
ot.RandomGenerator.SetSeed(0)
size = 200
# input sample
inputSample = ot.Uniform(-1.0, 1.0).getSample(size)
outputSample = ot.Sample(inputSample)
# Evaluation of y = ax + b (a: scale, b: translate)
# scale
scale = [3.0]
outputSample *= scale
# translate sample
translate = [10]
outputSample += translate
# Finally inverse transform using an arbitrary lambda
lamb = [2.0]
boxCoxFunction = ot.InverseBoxCoxEvaluation(lamb)
# transform y using BoxCox function
outputSample = boxCoxFunction(outputSample)
# Add small noise
epsilon = ot.Normal(0, 1.0e-3).getSample(size)
outputSample += epsilon
# Now we build the factory
factory = ot.BoxCoxFactory()
# Creation of the BoxCoxTransform
basis = ot.LinearBasisFactory(1).build()
shift = [1.0e-10]
myBoxCox, result = factory.buildWithLM(inputSample, outputSample, shift)
# estimated lambda = 1.99098, beta = [9.90054,2.95995]
beta = [9.90054, 2.95995]
rtol = 1e-2
atol = 5e-3
ott.assert_almost_equal(myBoxCox.getLambda(), lamb, rtol, atol)
ott.assert_almost_equal(result.getCoefficients(), beta, rtol, atol)
|