File: t_Burr_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (31 lines) | stat: -rw-r--r-- 1,514 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Distribution  class=Burr name=Burr dimension=1 c=1.5 k=4.5
Distribution  Burr(c = 1.5, k = 4.5)
Elliptical =  False
Continuous =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[0.393842]
Point=  class=Point name=Unnamed dimension=1 values=[1.5]
pdf     = 0.0267008010312
cdf= 0.990836694178
cdf gradient     = class=Point name=Unnamed dimension=2 values=[0.0108262,0.00955539]
quantile= class=Point name=Unnamed dimension=1 values=[0.963592]
cdf(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=1 values=[0.0508413]
Survival(inverseSurvival)=0.950000
entropy=-0.031868
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 1.77199} with f=
MinimumVolumeLevelSetEvaluation(Burr(c = 1.5, k = 4.5))
beta= [0.169994]
Bilateral confidence interval= [0.0316926, 1.1727]
beta= [0.95]
Unilateral confidence interval (lower tail)= [0, 0.963592]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.0508413, 118.536]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[0.37922]
standard deviation= class=Point name=Unnamed dimension=1 values=[0.310221]
skewness= class=Point name=Unnamed dimension=1 values=[2.16221]
kurtosis= class=Point name=Unnamed dimension=1 values=[13.2624]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.0962368]
parameters= [class=PointWithDescription name=X0 dimension=2 description=[c,k] values=[1.5,4.5]]
Standard representative= Burr(c = 1.5, k = 4.5)