1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
Distribution class=Burr name=Burr dimension=1 c=1.5 k=4.5
Distribution Burr(c = 1.5, k = 4.5)
Elliptical = False
Continuous = True
oneRealization= class=Point name=Unnamed dimension=1 values=[0.393842]
Point= class=Point name=Unnamed dimension=1 values=[1.5]
pdf = 0.0267008010312
cdf= 0.990836694178
cdf gradient = class=Point name=Unnamed dimension=2 values=[0.0108262,0.00955539]
quantile= class=Point name=Unnamed dimension=1 values=[0.963592]
cdf(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=1 values=[0.0508413]
Survival(inverseSurvival)=0.950000
entropy=-0.031868
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 1.77199} with f=
MinimumVolumeLevelSetEvaluation(Burr(c = 1.5, k = 4.5))
beta= [0.169994]
Bilateral confidence interval= [0.0316926, 1.1727]
beta= [0.95]
Unilateral confidence interval (lower tail)= [0, 0.963592]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.0508413, 118.536]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[0.37922]
standard deviation= class=Point name=Unnamed dimension=1 values=[0.310221]
skewness= class=Point name=Unnamed dimension=1 values=[2.16221]
kurtosis= class=Point name=Unnamed dimension=1 values=[13.2624]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.0962368]
parameters= [class=PointWithDescription name=X0 dimension=2 description=[c,k] values=[1.5,4.5]]
Standard representative= Burr(c = 1.5, k = 4.5)
|