1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
ot.PlatformInfo.SetNumericalPrecision(4)
# linear
levelFunction = ot.SymbolicFunction(["x1", "x2", "x3", "x4"], ["x1+2*x2-3*x3+4*x4"])
algo = ot.Cobyla(ot.NearestPointProblem(levelFunction, 3.0))
algo.setStartingPoint([0.0] * 4)
print("algo=", algo)
algo.run()
result = algo.getResult()
print("x^=", result.getOptimalPoint())
print("f(x^)=", result.getOptimalValue())
print("lambda^=", result.computeLagrangeMultipliers())
# non-linear
levelFunction = ot.SymbolicFunction(
["x1", "x2", "x3", "x4"], ["x1*cos(x1)+2*x2*x3-3*x3+4*x3*x4"]
)
algo = ot.Cobyla(ot.NearestPointProblem(levelFunction, 3.0))
algo.setStartingPoint([0.0] * 4)
algo.setMaximumCallsNumber(400)
algo.setMaximumAbsoluteError(1.0e-10)
algo.setMaximumRelativeError(1.0e-10)
algo.setMaximumResidualError(1.0e-10)
algo.setMaximumConstraintError(1.0e-10)
algo.run()
result = algo.getResult()
print("x^=", result.getOptimalPoint())
print("f(x^)=", result.getOptimalValue())
print("lambda^=", result.computeLagrangeMultipliers())
# bounds
linear = ot.SymbolicFunction(["x1", "x2", "x3", "x4"], ["x1+2*x2-3*x3+4*x4"])
dim = 4
bounds = ot.Interval([-3.0] * dim, [5.0] * dim)
for minimization in [True, False]:
problem = ot.OptimizationProblem(linear, ot.Function(), ot.Function(), bounds)
problem.setMinimization(minimization)
algo = ot.Cobyla(problem)
algo.setMaximumCallsNumber(150)
algo.setStartingPoint([0.0] * dim)
print("algo=", algo)
algo.run()
result = algo.getResult()
print("x^=", result.getOptimalPoint())
print("f(x^)=", result.getOptimalValue())
print("lambda^=", result.computeLagrangeMultipliers())
# empty problem
algo = ot.Cobyla()
try:
algo.run()
except Exception:
print("OK")
|