File: t_CompoundDistribution_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (183 lines) | stat: -rw-r--r-- 7,134 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
##################################################
method= GaussProduct
distribution= CompoundDistribution(X with X|Theta~JointDistribution(Theta), Theta=f(Y), f=id_4, Y~JointDistribution(Dirac(point = [1]), Dirac(point = [2]), Bernoulli(p = 0.7), Uniform(a = 3, b = 4), IndependentCopula(dimension = 4)))
Parameters  [[point_0_marginal_0 : 1],[point_0_marginal_1 : 2],[p_marginal_2 : 0.7],[a_marginal_3 : 3, b_marginal_3 : 4],[]]
Mean  [1.5,2.1]
Elliptical distribution=  False
Elliptical copula=  False
Independent copula=  False
oneRealization= [1.13528,1.0937]
oneSample=     [ X0      X1      ]
0 : [ 1.92068 2.49374 ]
1 : [ 1.71438 1.87896 ]
2 : [ 1.8835  1.80748 ]
3 : [ 1.68457 3.16374 ]
4 : [ 1.58862 1.53788 ]
5 : [ 1.21044 2.02765 ]
6 : [ 1.98184 3.21605 ]
7 : [ 1.25986 2.2968  ]
8 : [ 1.11108 1.85243 ]
9 : [ 1.97898 2.729   ]
anotherSample mean= [1.50538,2.09375]
anotherSample covariance= [[  0.0847776   -0.000929088 ]
 [ -0.000929088  0.74965     ]]
Zero point=  [0,0]  pdf= 0.0  cdf= 0.0
Quantile= [1.97468,3.60358]
CDF(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=2 values=[1.02532,0.293386]
Survival(inverseSurvival)=0.950000
Unilateral confidence interval (lower tail)= [-1, 1.97468]
[-1, 3.60358]
beta= [0.974679]
Unilateral confidence interval (upper tail)= [1.02532, 1]
[0.293386, 1]
beta= [0.974679]
##################################################
method= QMC
distribution= CompoundDistribution(X with X|Theta~JointDistribution(Theta), Theta=f(Y), f=id_4, Y~JointDistribution(Dirac(point = [1]), Dirac(point = [2]), Bernoulli(p = 0.7), Uniform(a = 3, b = 4), IndependentCopula(dimension = 4)))
Parameters  [[point_0_marginal_0 : 1],[point_0_marginal_1 : 2],[p_marginal_2 : 0.7],[a_marginal_3 : 3, b_marginal_3 : 4],[]]
Mean  [1.5,2.09997]
Elliptical distribution=  False
Elliptical copula=  False
Independent copula=  False
oneRealization= [1.28994,2.70175]
oneSample=     [ X0        X1        ]
0 : [ 1.724     1.349     ]
1 : [ 1.08472   3.51038   ]
2 : [ 1.46333   2.69445   ]
3 : [ 1.84205   2.68757   ]
4 : [ 1.88905   2.07805   ]
5 : [ 1.61304   0.0419325 ]
6 : [ 1.87194   0.394497  ]
7 : [ 1.34017   2.39098   ]
8 : [ 1.88327   2.3063    ]
9 : [ 1.41826   2.7288    ]
anotherSample mean= [1.50033,2.09473]
anotherSample covariance= [[ 0.0823686   9.04142e-05 ]
 [ 9.04142e-05 0.756718    ]]
Zero point=  [0,0]  pdf= 0.0  cdf= 0.0
Quantile= [1.97468,3.60334]
CDF(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=2 values=[1.02532,0.293381]
Survival(inverseSurvival)=0.950000
Unilateral confidence interval (lower tail)= [-1, 1.97468]
[-1, 3.60334]
beta= [0.974679]
Unilateral confidence interval (upper tail)= [1.02532, 1]
[0.293381, 1]
beta= [0.974679]
##################################################
method= MC
distribution= CompoundDistribution(X with X|Theta~JointDistribution(Theta), Theta=f(Y), f=id_4, Y~JointDistribution(Dirac(point = [1]), Dirac(point = [2]), Bernoulli(p = 0.7), Uniform(a = 3, b = 4), IndependentCopula(dimension = 4)))
Parameters  [[point_0_marginal_0 : 1],[point_0_marginal_1 : 2],[p_marginal_2 : 0.7],[a_marginal_3 : 3, b_marginal_3 : 4],[]]
Mean  [1.5,2.10103]
Elliptical distribution=  False
Elliptical copula=  False
Independent copula=  False
oneRealization= [1.25105,2.80837]
oneSample=     [ X0      X1      ]
0 : [ 1.31227 1.91181 ]
1 : [ 1.85168 1.81568 ]
2 : [ 1.78838 2.33992 ]
3 : [ 1.52819 3.33285 ]
4 : [ 1.89918 2.42515 ]
5 : [ 1.41437 3.33561 ]
6 : [ 1.46582 2.14057 ]
7 : [ 1.71435 2.49255 ]
8 : [ 1.61359 3.09347 ]
9 : [ 1.87601 1.21486 ]
anotherSample mean= [1.49875,2.10847]
anotherSample covariance= [[ 0.0835088 0.002056  ]
 [ 0.002056  0.748267  ]]
Zero point=  [0,0]  pdf= 0.0  cdf= 0.0
Quantile= [1.97468,3.60826]
CDF(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=2 values=[1.02532,0.293522]
Survival(inverseSurvival)=0.950000
Unilateral confidence interval (lower tail)= [-1, 1.97468]
[-1, 3.60826]
beta= [0.974679]
Unilateral confidence interval (upper tail)= [1.02532, 1]
[0.293522, 1]
beta= [0.974679]
conditioning distribution= JointDistribution(Uniform(a = 0, b = 1), Uniform(a = 1, b = 2), IndependentCopula(dimension = 2))
Distribution  CompoundDistribution(X with X|Theta~Normal(Theta), Theta=f(Y), f=id_2, Y~JointDistribution(Uniform(a = 0, b = 1), Uniform(a = 1, b = 2), IndependentCopula(dimension = 2)))
Parameters  [[a_marginal_0 : 0, b_marginal_0 : 1],[a_marginal_1 : 1, b_marginal_1 : 2],[]]
Mean  [0.49998]
Covariance  [[ 2.42797 ]]
Elliptical distribution=  False
Elliptical copula=  True
Independent copula=  True
oneRealization= [1.35735]
oneSample=     [ X0         ]
0 : [  2.15156   ]
1 : [ -0.0274854 ]
2 : [ -0.515759  ]
3 : [  1.33154   ]
4 : [  3.43509   ]
5 : [  1.21906   ]
6 : [  2.84108   ]
7 : [  3.32709   ]
8 : [ -1.93128   ]
9 : [  1.0006    ]
anotherSample mean= [0.493427]
anotherSample covariance= [[ 2.39148 ]]
Zero point=  [0]  pdf=0.253294  cdf=0.368038
Quantile= [3.05746]
CDF(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-2.05552]
Survival(inverseSurvival)=0.950000
conditioning distribution= JointDistribution(Binomial(n = 3, p = 0.5), Uniform(a = 1, b = 2), IndependentCopula(dimension = 2))
Distribution  CompoundDistribution(X with X|Theta~Normal(Theta), Theta=f(Y), f=id_2, Y~JointDistribution(Binomial(n = 3, p = 0.5), Uniform(a = 1, b = 2), IndependentCopula(dimension = 2)))
Parameters  [[n_marginal_0 : 3, p_marginal_0 : 0.5],[a_marginal_1 : 1, b_marginal_1 : 2],[]]
Mean  [1.5]
Covariance  [[ 3.09555 ]]
Elliptical distribution=  False
Elliptical copula=  True
Independent copula=  True
oneRealization= [3.73237]
oneSample=     [ X0        ]
0 : [ -0.678003 ]
1 : [  0.129661 ]
2 : [  3.15535  ]
3 : [  1.10271  ]
4 : [  0.417401 ]
5 : [  2.75515  ]
6 : [  2.09963  ]
7 : [ -1.09533  ]
8 : [  4.28327  ]
9 : [ -2.47362  ]
anotherSample mean= [1.50548]
anotherSample covariance= [[ 3.0539 ]]
Zero point=  [0]  pdf=0.156662  cdf=0.192661
Quantile= [4.38606]
CDF(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-1.38606]
Survival(inverseSurvival)=0.950000
conditioning distribution= JointDistribution(Dirac(point = [0.5]), Uniform(a = 1, b = 2), IndependentCopula(dimension = 2))
Distribution  CompoundDistribution(X with X|Theta~Normal(Theta), Theta=f(Y), f=id_2, Y~JointDistribution(Dirac(point = [0.5]), Uniform(a = 1, b = 2), IndependentCopula(dimension = 2)))
Parameters  [[point_0_marginal_0 : 0.5],[a_marginal_1 : 1, b_marginal_1 : 2],[]]
Mean  [0.5]
Covariance  [[ 2.33541 ]]
Elliptical distribution=  False
Elliptical copula=  True
Independent copula=  True
oneRealization= [1.58198]
oneSample=     [ X0        ]
0 : [  1.62667  ]
1 : [ -1.68229  ]
2 : [  4.89959  ]
3 : [  1.72367  ]
4 : [ -1.13326  ]
5 : [  0.177625 ]
6 : [  1.46685  ]
7 : [  0.59936  ]
8 : [  1.59169  ]
9 : [ -0.94916  ]
anotherSample mean= [0.52044]
anotherSample covariance= [[ 2.34821 ]]
Zero point=  [0]  pdf=0.258471  cdf=0.364815
Quantile= [3.00756]
CDF(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-2.00756]
Survival(inverseSurvival)=0.950000