1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
##################################################
method= GaussProduct
distribution= CompoundDistribution(X with X|Theta~JointDistribution(Theta), Theta=f(Y), f=id_4, Y~JointDistribution(Dirac(point = [1]), Dirac(point = [2]), Bernoulli(p = 0.7), Uniform(a = 3, b = 4), IndependentCopula(dimension = 4)))
Parameters [[point_0_marginal_0 : 1],[point_0_marginal_1 : 2],[p_marginal_2 : 0.7],[a_marginal_3 : 3, b_marginal_3 : 4],[]]
Mean [1.5,2.1]
Elliptical distribution= False
Elliptical copula= False
Independent copula= False
oneRealization= [1.13528,1.0937]
oneSample= [ X0 X1 ]
0 : [ 1.92068 2.49374 ]
1 : [ 1.71438 1.87896 ]
2 : [ 1.8835 1.80748 ]
3 : [ 1.68457 3.16374 ]
4 : [ 1.58862 1.53788 ]
5 : [ 1.21044 2.02765 ]
6 : [ 1.98184 3.21605 ]
7 : [ 1.25986 2.2968 ]
8 : [ 1.11108 1.85243 ]
9 : [ 1.97898 2.729 ]
anotherSample mean= [1.50538,2.09375]
anotherSample covariance= [[ 0.0847776 -0.000929088 ]
[ -0.000929088 0.74965 ]]
Zero point= [0,0] pdf= 0.0 cdf= 0.0
Quantile= [1.97468,3.60358]
CDF(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=2 values=[1.02532,0.293386]
Survival(inverseSurvival)=0.950000
Unilateral confidence interval (lower tail)= [-1, 1.97468]
[-1, 3.60358]
beta= [0.974679]
Unilateral confidence interval (upper tail)= [1.02532, 1]
[0.293386, 1]
beta= [0.974679]
##################################################
method= QMC
distribution= CompoundDistribution(X with X|Theta~JointDistribution(Theta), Theta=f(Y), f=id_4, Y~JointDistribution(Dirac(point = [1]), Dirac(point = [2]), Bernoulli(p = 0.7), Uniform(a = 3, b = 4), IndependentCopula(dimension = 4)))
Parameters [[point_0_marginal_0 : 1],[point_0_marginal_1 : 2],[p_marginal_2 : 0.7],[a_marginal_3 : 3, b_marginal_3 : 4],[]]
Mean [1.5,2.09997]
Elliptical distribution= False
Elliptical copula= False
Independent copula= False
oneRealization= [1.28994,2.70175]
oneSample= [ X0 X1 ]
0 : [ 1.724 1.349 ]
1 : [ 1.08472 3.51038 ]
2 : [ 1.46333 2.69445 ]
3 : [ 1.84205 2.68757 ]
4 : [ 1.88905 2.07805 ]
5 : [ 1.61304 0.0419325 ]
6 : [ 1.87194 0.394497 ]
7 : [ 1.34017 2.39098 ]
8 : [ 1.88327 2.3063 ]
9 : [ 1.41826 2.7288 ]
anotherSample mean= [1.50033,2.09473]
anotherSample covariance= [[ 0.0823686 9.04142e-05 ]
[ 9.04142e-05 0.756718 ]]
Zero point= [0,0] pdf= 0.0 cdf= 0.0
Quantile= [1.97468,3.60334]
CDF(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=2 values=[1.02532,0.293381]
Survival(inverseSurvival)=0.950000
Unilateral confidence interval (lower tail)= [-1, 1.97468]
[-1, 3.60334]
beta= [0.974679]
Unilateral confidence interval (upper tail)= [1.02532, 1]
[0.293381, 1]
beta= [0.974679]
##################################################
method= MC
distribution= CompoundDistribution(X with X|Theta~JointDistribution(Theta), Theta=f(Y), f=id_4, Y~JointDistribution(Dirac(point = [1]), Dirac(point = [2]), Bernoulli(p = 0.7), Uniform(a = 3, b = 4), IndependentCopula(dimension = 4)))
Parameters [[point_0_marginal_0 : 1],[point_0_marginal_1 : 2],[p_marginal_2 : 0.7],[a_marginal_3 : 3, b_marginal_3 : 4],[]]
Mean [1.5,2.10103]
Elliptical distribution= False
Elliptical copula= False
Independent copula= False
oneRealization= [1.25105,2.80837]
oneSample= [ X0 X1 ]
0 : [ 1.31227 1.91181 ]
1 : [ 1.85168 1.81568 ]
2 : [ 1.78838 2.33992 ]
3 : [ 1.52819 3.33285 ]
4 : [ 1.89918 2.42515 ]
5 : [ 1.41437 3.33561 ]
6 : [ 1.46582 2.14057 ]
7 : [ 1.71435 2.49255 ]
8 : [ 1.61359 3.09347 ]
9 : [ 1.87601 1.21486 ]
anotherSample mean= [1.49875,2.10847]
anotherSample covariance= [[ 0.0835088 0.002056 ]
[ 0.002056 0.748267 ]]
Zero point= [0,0] pdf= 0.0 cdf= 0.0
Quantile= [1.97468,3.60826]
CDF(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=2 values=[1.02532,0.293522]
Survival(inverseSurvival)=0.950000
Unilateral confidence interval (lower tail)= [-1, 1.97468]
[-1, 3.60826]
beta= [0.974679]
Unilateral confidence interval (upper tail)= [1.02532, 1]
[0.293522, 1]
beta= [0.974679]
conditioning distribution= JointDistribution(Uniform(a = 0, b = 1), Uniform(a = 1, b = 2), IndependentCopula(dimension = 2))
Distribution CompoundDistribution(X with X|Theta~Normal(Theta), Theta=f(Y), f=id_2, Y~JointDistribution(Uniform(a = 0, b = 1), Uniform(a = 1, b = 2), IndependentCopula(dimension = 2)))
Parameters [[a_marginal_0 : 0, b_marginal_0 : 1],[a_marginal_1 : 1, b_marginal_1 : 2],[]]
Mean [0.49998]
Covariance [[ 2.42797 ]]
Elliptical distribution= False
Elliptical copula= True
Independent copula= True
oneRealization= [1.35735]
oneSample= [ X0 ]
0 : [ 2.15156 ]
1 : [ -0.0274854 ]
2 : [ -0.515759 ]
3 : [ 1.33154 ]
4 : [ 3.43509 ]
5 : [ 1.21906 ]
6 : [ 2.84108 ]
7 : [ 3.32709 ]
8 : [ -1.93128 ]
9 : [ 1.0006 ]
anotherSample mean= [0.493427]
anotherSample covariance= [[ 2.39148 ]]
Zero point= [0] pdf=0.253294 cdf=0.368038
Quantile= [3.05746]
CDF(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-2.05552]
Survival(inverseSurvival)=0.950000
conditioning distribution= JointDistribution(Binomial(n = 3, p = 0.5), Uniform(a = 1, b = 2), IndependentCopula(dimension = 2))
Distribution CompoundDistribution(X with X|Theta~Normal(Theta), Theta=f(Y), f=id_2, Y~JointDistribution(Binomial(n = 3, p = 0.5), Uniform(a = 1, b = 2), IndependentCopula(dimension = 2)))
Parameters [[n_marginal_0 : 3, p_marginal_0 : 0.5],[a_marginal_1 : 1, b_marginal_1 : 2],[]]
Mean [1.5]
Covariance [[ 3.09555 ]]
Elliptical distribution= False
Elliptical copula= True
Independent copula= True
oneRealization= [3.73237]
oneSample= [ X0 ]
0 : [ -0.678003 ]
1 : [ 0.129661 ]
2 : [ 3.15535 ]
3 : [ 1.10271 ]
4 : [ 0.417401 ]
5 : [ 2.75515 ]
6 : [ 2.09963 ]
7 : [ -1.09533 ]
8 : [ 4.28327 ]
9 : [ -2.47362 ]
anotherSample mean= [1.50548]
anotherSample covariance= [[ 3.0539 ]]
Zero point= [0] pdf=0.156662 cdf=0.192661
Quantile= [4.38606]
CDF(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-1.38606]
Survival(inverseSurvival)=0.950000
conditioning distribution= JointDistribution(Dirac(point = [0.5]), Uniform(a = 1, b = 2), IndependentCopula(dimension = 2))
Distribution CompoundDistribution(X with X|Theta~Normal(Theta), Theta=f(Y), f=id_2, Y~JointDistribution(Dirac(point = [0.5]), Uniform(a = 1, b = 2), IndependentCopula(dimension = 2)))
Parameters [[point_0_marginal_0 : 0.5],[a_marginal_1 : 1, b_marginal_1 : 2],[]]
Mean [0.5]
Covariance [[ 2.33541 ]]
Elliptical distribution= False
Elliptical copula= True
Independent copula= True
oneRealization= [1.58198]
oneSample= [ X0 ]
0 : [ 1.62667 ]
1 : [ -1.68229 ]
2 : [ 4.89959 ]
3 : [ 1.72367 ]
4 : [ -1.13326 ]
5 : [ 0.177625 ]
6 : [ 1.46685 ]
7 : [ 0.59936 ]
8 : [ 1.59169 ]
9 : [ -0.94916 ]
anotherSample mean= [0.52044]
anotherSample covariance= [[ 2.34821 ]]
Zero point= [0] pdf=0.258471 cdf=0.364815
Quantile= [3.00756]
CDF(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-2.00756]
Survival(inverseSurvival)=0.950000
|