1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
|
#! /usr/bin/env python
import openturns as ot
import openturns.experimental as otexp
import openturns.testing as ott
ot.TESTPREAMBLE()
inputDimension = 2
constant = [1, 2, 3]
f = otexp.ConstantFunction(inputDimension, constant)
print(f)
print(repr(f))
assert f.getInputDimension() == inputDimension
assert f.getOutputDimension() == len(constant)
assert f == f
x = [5, 6]
y = f(x)
print(y)
ott.assert_almost_equal(y, constant)
dx = f.gradient(x)
ott.assert_almost_equal(dx, ot.Matrix(inputDimension, len(constant)))
dx2 = f.hessian(x)
ott.assert_almost_equal(dx2, ot.SymmetricTensor(inputDimension, len(constant)))
f02 = f.getMarginal([0, 2])
print(f02)
y02 = f02(x)
ott.assert_almost_equal(y02, [1, 3])
|