File: t_Distribution_chaospy.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (45 lines) | stat: -rwxr-xr-x 1,740 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/usr/bin/env python

import openturns as ot
import chaospy as cp
import numpy as np

# A chaospy Triangle distribution
d0 = cp.Triangle(2.0, 3.5, 4.0)
d1 = cp.Kumaraswamy(2.0, 3.0, -1.0, 4.0)
d2 = cp.J(d0, d1)
for chaospy_dist in [d0, d1, d2]:
    np.random.seed(42)

    # create an openturns distribution
    py_dist = ot.ChaospyDistribution(chaospy_dist)
    distribution = ot.Distribution(py_dist)

    print("distribution=", distribution)
    print("realization=", distribution.getRealization())
    sample = distribution.getSample(10000)
    print("sample=", sample[0:5])
    point = [2.6] * distribution.getDimension()
    print("pdf= %.6g" % distribution.computePDF(point))
    cdf = distribution.computeCDF(point)
    print("cdf= %.6g" % cdf)
    print("mean=", distribution.getMean())
    print("mean(sampling)=", sample.computeMean())
    print("std=", distribution.getStandardDeviation())
    print("std(sampling)=", sample.computeStandardDeviation())
    print("skewness=", distribution.getSkewness())
    print("skewness(sampling)=", sample.computeSkewness())
    print("kurtosis=", distribution.getKurtosis())
    print("kurtosis(sampling)=", sample.computeKurtosis())
    if len(chaospy_dist) == 1:
        for i in [1, 2, 3, 4]:
            print("moment(" + str(i) + ")=", distribution.getMoment(i))
    print("range=", distribution.getRange())
    if len(chaospy_dist) == 1:
        print("quantile=", distribution.computeQuantile(cdf))
        print("quantile (tail)=", distribution.computeQuantile(cdf, True))
        print("scalar quantile=%.6g" % distribution.computeScalarQuantile(cdf))
        print(
            "scalar quantile (tail)=%.6g"
            % distribution.computeScalarQuantile(cdf, True)
        )