File: t_Distribution_scipy.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (52 lines) | stat: -rwxr-xr-x 2,076 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/usr/bin/env python

import openturns as ot
import scipy.stats as st
import numpy as np

for scipy_dist in [
    st.uniform(-1.0, 4.0),
    st.johnsonsu(2.55, 2.25),
    st.binom(10, 0.5),
    st.poisson(0.6),
]:
    np.random.seed(42)

    # create an openturns distribution
    py_dist = ot.SciPyDistribution(scipy_dist)
    distribution = ot.Distribution(py_dist)

    print("distribution=", distribution)
    print("continuous?", distribution.isContinuous())
    print("discrete?", distribution.isDiscrete())
    print("integral?", distribution.isIntegral())
    print("realization=", distribution.getRealization())
    sample = distribution.getSample(10000)
    print("sample=", sample[0:5])
    print("pdf@0.1= %.6g" % (distribution.computePDF([0.1])))
    point = [0.0]
    print("pdf= %.6g" % distribution.computePDF(point))
    cdf = distribution.computeCDF(point)
    print("cdf= %.6g" % cdf)
    print("quantile=", distribution.computeQuantile(cdf))
    print("quantile (tail)=", distribution.computeQuantile(cdf, True))
    print("scalar quantile=%.6g" % distribution.computeScalarQuantile(cdf))
    print("scalar quantile (tail)=%.6g" % distribution.computeScalarQuantile(cdf, True))
    print("mean=", distribution.getMean())
    print("mean(sampling)=", sample.computeMean())
    print("std=", distribution.getStandardDeviation())
    print("std(sampling)=", sample.computeStandardDeviation())
    print("skewness=", distribution.getSkewness())
    print("skewness(sampling)=", sample.computeSkewness())
    print("kurtosis=", distribution.getKurtosis())
    print("kurtosis(sampling)=", sample.computeKurtosis())
    print("range=", distribution.getRange())
    if distribution.isDiscrete():
        print("support=", distribution.getSupport())
    parameter = distribution.getParameter()
    print("parameter=", distribution.getParameter())
    if len(parameter) > 0:
        parameter[0] = 3.5
    distribution.setParameter(parameter)
    print("parameter=", distribution.getParameter())
    print("parameterDesc=", distribution.getParameterDescription())