1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
#! /usr/bin/env python
import openturns as ot
import openturns.experimental as otexp
import openturns.testing
# branin
dim = 2
formula = "((x2-(5.1/(4*pi_^2))*x1^2+5*x1/pi_-6)^2+10*(1-1/8*pi_)*cos(x1)+10-54.8104)/51.9496"
branin = ot.SymbolicFunction(["x1", "x2"], [formula])
transfo = ot.SymbolicFunction(["u1", "u2"], ["15*u1-5", "15*u2"])
model = ot.ComposedFunction(branin, transfo)
# problem
problem = ot.OptimizationProblem()
problem.setObjective(model)
bounds = ot.Interval([0.0] * dim, [1.0] * dim)
problem.setBounds(bounds)
# design
experiment = ot.Box([1, 1])
inputSample = experiment.generate()
outputSample = model(inputSample)
# with kriging
covarianceModel = ot.SquaredExponential([0.3, 0.25], [1.0])
covarianceModel.setNuggetFactor(0.96) # assume constant noise var
basis = ot.ConstantBasisFactory(dim).build()
kriging = ot.KrigingAlgorithm(inputSample, outputSample, covarianceModel, basis)
kriging.run()
# EGO
algo = otexp.EfficientGlobalOptimization(problem, kriging.getResult())
algo.setMaximumCallsNumber(14)
algo.setAEITradeoff(0.66)
algo.run()
result = algo.getResult()
print("iteration=", result.getIterationNumber())
iters = result.getIterationNumber()
assert iters > 3 and iters < 15, "Too few/much iterations"
print(result.getInputSample())
print(result.getOutputSample())
print("x*=", result.getOptimalPoint(), "y*=", result.getOptimalValue())
openturns.testing.assert_almost_equal(result.getOptimalValue(), [-0.967], 1e-2, 1e-2)
# local refinement despite noise (we still want to check we're not too far from optimum)
problem.setObjective(model.getMarginal(0))
algo2 = ot.TNC(problem)
algo2.setStartingPoint(result.getOptimalPoint())
algo2.run()
result = algo2.getResult()
openturns.testing.assert_almost_equal(
result.getOptimalPoint(), [0.961652, 0.165000], 1e-5, 1e-5
)
openturns.testing.assert_almost_equal(result.getOptimalValue(), [-0.979476], 1e-5, 1e-5)
# with GPR
covarianceModel = ot.SquaredExponential([2.50057] * dim, [0.1])
basis = ot.ConstantBasisFactory(dim).build()
fitter = otexp.GaussianProcessFitter(inputSample, outputSample, covarianceModel, basis)
fitter.run()
gpr = otexp.GaussianProcessRegression(fitter.getResult())
gpr.run()
# EGO
algo = otexp.EfficientGlobalOptimization(problem, gpr.getResult())
algo.setMaximumCallsNumber(15)
algo.setMultiStartExperimentSize(100) # n multistart candidates
algo.setMultiStartNumber(20) # number of multistart points for improvement optim
algo.setParameterEstimationPeriod(1) # relearn kriging parameters every X iteration
algo.setCorrelationLengthFactor(1.0) # correlation length stopping criterion factor
algo.run()
result = algo.getResult()
print("x*=", result.getOptimalPoint(), "y*=", result.getOptimalValue())
openturns.testing.assert_almost_equal(result.getOptimalValue(), [-0.979476], 1e-4, 1e-4)
print("iteration=", result.getIterationNumber())
iters = result.getIterationNumber()
assert iters > 3 and iters < 16, "Too few/much iterations"
print(result.getInputSample())
print(result.getOutputSample())
# local refinement
algo2 = ot.TNC(problem)
algo2.setStartingPoint(result.getOptimalPoint())
algo2.run()
result = algo2.getResult()
print("x*=", result.getOptimalPoint(), "y*=", result.getOptimalValue())
# openturns.testing.assert_almost_equal(result.getOptimalPoint(), [0.0] * dim, 1e-7, 1e-5)
openturns.testing.assert_almost_equal(result.getOptimalValue(), [-0.979476], 1e-4, 1e-4)
ei = algo.getExpectedImprovement()
print("ei=", ei)
# Cobyla out of bound test
ot.RandomGenerator.SetSeed(0)
dim = 4
model = ot.SymbolicFunction(["x1", "x2", "x3", "x4"], ["x1*x1+x2^3*x1+x3+x4"])
model = ot.MemoizeFunction(model)
bounds = ot.Interval([-5.0] * dim, [5.0] * dim)
problem = ot.OptimizationProblem()
problem.setObjective(model)
problem.setBounds(bounds)
experiment = ot.Composite([0.0] * dim, [1.0, 2.0, 4.0])
inputSample = experiment.generate()
outputSample = model(inputSample)
covarianceModel = ot.SquaredExponential([2.0] * dim, [0.1])
basis = ot.ConstantBasisFactory(dim).build()
fitter = otexp.GaussianProcessFitter(inputSample, outputSample, covarianceModel, basis)
fitter.run()
gpr = otexp.GaussianProcessRegression(fitter.getResult())
gpr.run()
algo = otexp.EfficientGlobalOptimization(problem, gpr.getResult())
algo.setMaximumCallsNumber(10)
algo.run()
result = algo.getResult()
# check maximization
problem.setMinimization(False)
algo = otexp.EfficientGlobalOptimization(problem, gpr.getResult())
algo.setMaximumCallsNumber(10)
algo.run()
result = algo.getResult()
assert result.getOptimalValue()[0] >= 650.0
print("OK")
|