File: t_Epanechnikov_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (39 lines) | stat: -rw-r--r-- 1,997 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Distribution  class=Epanechnikov name=Epanechnikov dimension=1
Distribution  Epanechnikov()
Elliptical =  True
Continuous =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[0.174954]
oneSample first= class=Point name=Unnamed dimension=1 values=[0.573175]  last= class=Point name=Unnamed dimension=1 values=[-0.100711]
mean= class=Point name=Unnamed dimension=1 values=[0.00498178]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.203765]
Point=  class=Point name=Unnamed dimension=1 values=[0.5]
ddf     = class=Point name=Unnamed dimension=1 values=[-0.75]
log pdf=-0.575364
pdf     =0.562500
cdf=0.843750
ccdf=0.156250
pdf gradient     = class=Point name=Unnamed dimension=0 values=[]
cdf gradient     = class=Point name=Unnamed dimension=0 values=[]
quantile= class=Point name=Unnamed dimension=1 values=[0.729299]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-0.729299]
Survival(inverseSurvival)=0.950000
entropy=0.568054
Minimum volume interval= [-0.811401, 0.811401]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 1.36172} with f=
MinimumVolumeLevelSetEvaluation(Epanechnikov())
beta= [0.256221]
Bilateral confidence interval= [-0.811401, 0.811401]
beta= [0.95]
Unilateral confidence interval (lower tail)= [-1, 0.729299]
beta= [0.95]
Unilateral confidence interval (upper tail)= [-0.729299, 1]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[0]
standard deviation= class=Point name=Unnamed dimension=1 values=[0.447214]
skewness= class=Point name=Unnamed dimension=1 values=[0]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.14286]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.2]
parameters= [class=PointWithDescription name=X0 dimension=0 description=[] values=[]]
Standard representative= Beta(alpha = 2, beta = 2, a = -1, b = 1)