1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
dim = 2
distribution = ot.Normal(dim)
X = ot.RandomVector(distribution)
# 1. Composite/Composite
f1 = ot.SymbolicFunction(["x" + str(i) for i in range(dim)], ["x0"])
f2 = ot.SymbolicFunction(["x" + str(i) for i in range(dim)], ["x1"])
Y1 = ot.CompositeRandomVector(f1, X)
l2 = ot.LevelSet(f2, ot.Greater(), 0.0)
e1 = ot.ThresholdEvent(Y1, ot.Less(), 0.0)
e2 = ot.DomainEvent(X, l2)
e3 = e1.intersect(e2)
# print('e3=', e3)
proba_e3 = e3.getSample(10000).computeMean()[0]
print("proba_e3 = %.3g" % proba_e3)
ott.assert_almost_equal(proba_e3, 0.25, 1e-2, 1e-2)
e4 = e1.join(e2)
# print('e4=', e4)
proba_e4 = e4.getSample(10000).computeMean()[0]
print("proba_e4 = %.3g" % proba_e4)
ott.assert_almost_equal(proba_e4, 0.75, 1e-2, 1e-2)
e5 = ot.IntersectionEvent([e1, e2])
# print('e5=', e5)
proba_e5 = e5.getSample(10000).computeMean()[0]
print("proba_e5 = %.3g" % proba_e5)
ott.assert_almost_equal(proba_e5, 0.25, 1e-2, 1e-2)
e6 = ot.UnionEvent([e1, e2])
# print('e6=', e6)
proba_e6 = e6.getSample(10000).computeMean()[0]
print("proba_e6 = %.3g" % proba_e6)
ott.assert_almost_equal(proba_e6, 0.75, 1e-2, 1e-2)
# intersection of intersection
e7 = ot.IntersectionEvent([e1, ot.IntersectionEvent([e1, e2])])
ott.assert_almost_equal(e7.getSample(10000).computeMean()[0], 0.25, 1e-2, 1e-2)
e8 = ot.IntersectionEvent([ot.IntersectionEvent([e1, e2]), e1])
ott.assert_almost_equal(e8.getSample(10000).computeMean()[0], 0.25, 1e-2, 1e-2)
# union of union
e9 = ot.UnionEvent([e1, ot.UnionEvent([e1, e2])])
ott.assert_almost_equal(e9.getSample(10000).computeMean()[0], 0.75, 1e-2, 1e-2)
e10 = ot.UnionEvent([ot.UnionEvent([e1, e2]), e1])
ott.assert_almost_equal(e10.getSample(10000).computeMean()[0], 0.75, 1e-2, 1e-2)
# intersection of union
e11 = ot.IntersectionEvent([ot.UnionEvent([e1, e2]), ot.UnionEvent([e1, e2])])
ott.assert_almost_equal(e11.getSample(10000).computeMean()[0], 0.75, 1e-2, 1e-2)
# union of intersection
e12 = ot.UnionEvent([ot.IntersectionEvent([e1, e2]), ot.IntersectionEvent([e1, e2])])
ott.assert_almost_equal(e12.getSample(10000).computeMean()[0], 0.25, 1e-2, 1e-2)
# DomainEvent
domain = ot.Interval([-1.0] * dim, [1.0] * dim)
e13 = ot.DomainEvent(X, domain)
e13_probability = distribution.computeProbability(domain)
ott.assert_almost_equal(
e13.getSample(10000).computeMean()[0], e13_probability, 1e-2, 1e-2
)
# Union with DomainEvent
e14 = ot.UnionEvent([e1, e2, e13])
ott.assert_almost_equal(
e14.getSample(10000).computeMean()[0], 0.75 + e13_probability / 4, 1e-2, 1e-2
)
# Intersection with DomainEvent
e15 = ot.IntersectionEvent([e1, e2, e13])
ott.assert_almost_equal(
e15.getSample(10000).computeMean()[0], e13_probability / 4, 1e-2, 1e-2
)
# through simulation
def sim_event(ev):
experiment = ot.MonteCarloExperiment()
algo = ot.ProbabilitySimulationAlgorithm(ev, experiment)
algo.setMaximumOuterSampling(2500)
algo.setBlockSize(4)
algo.setMaximumCoefficientOfVariation(-1.0)
algo.run()
result = algo.getResult()
return result.getProbabilityEstimate()
ott.assert_almost_equal(sim_event(e5), 0.25, 1e-2, 1e-2)
ott.assert_almost_equal(sim_event(e6), 0.75, 1e-2, 1e-2)
ott.assert_almost_equal(sim_event(e7), 0.25, 1e-2, 1e-2)
ott.assert_almost_equal(sim_event(e8), 0.25, 1e-2, 1e-2)
ott.assert_almost_equal(sim_event(e9), 0.75, 1e-2, 1e-2)
ott.assert_almost_equal(sim_event(e10), 0.75, 1e-2, 1e-2)
ott.assert_almost_equal(sim_event(e11), 0.75, 1e-2, 1e-2)
ott.assert_almost_equal(sim_event(e12), 0.25, 1e-2, 2e-2)
ott.assert_almost_equal(sim_event(e13), e13_probability, 1e-2, 1e-2)
ott.assert_almost_equal(sim_event(e14), 0.75 + e13_probability / 4, 1e-2, 1e-2)
ott.assert_almost_equal(sim_event(e15), e13_probability / 4, 1e-2, 1e-2)
def subset_event(ev):
algo = ot.SubsetSampling(ev)
algo.setMaximumOuterSampling(2500)
algo.setBlockSize(4)
algo.run()
result = algo.getResult()
return result.getProbabilityEstimate()
ott.assert_almost_equal(subset_event(e3), 0.25, 1e-2, 1e-2)
ott.assert_almost_equal(subset_event(e5), 0.25, 1e-2, 1e-2)
ott.assert_almost_equal(subset_event(e6), 0.75, 1e-2, 1e-2)
ott.assert_almost_equal(subset_event(e7), 0.25, 1e-2, 1e-2)
ott.assert_almost_equal(subset_event(e8), 0.25, 1e-2, 1e-2)
ott.assert_almost_equal(subset_event(e9), 0.75, 1e-2, 1e-2)
ott.assert_almost_equal(subset_event(e10), 0.75, 1e-2, 1e-2)
ott.assert_almost_equal(subset_event(e11), 0.75, 1e-2, 1e-2)
ott.assert_almost_equal(subset_event(e12), 0.25, 1e-2, 1e-2)
# check that f2 is not called when not needed
f1 = ot.SymbolicFunction(["x" + str(i) for i in range(dim)], ["x0"])
f2 = ot.MemoizeFunction(ot.SymbolicFunction(["x" + str(i) for i in range(dim)], ["x1"]))
Y1 = ot.CompositeRandomVector(f1, X)
Y2 = ot.CompositeRandomVector(f2, X)
e1 = ot.ThresholdEvent(Y1, ot.Less(), 1e6)
e2 = ot.ThresholdEvent(Y2, ot.Less(), 0.0)
union = ot.UnionEvent([e1, e2])
proba = union.getSample(1000).computeMean()[0]
print(proba)
assert proba == 1.0, "always true"
assert f2.getCallsNumber() == 0, "union prune"
e1 = ot.ThresholdEvent(Y1, ot.Greater(), 1e6)
e2 = ot.ThresholdEvent(Y2, ot.Less(), 0.0)
intersection = ot.IntersectionEvent([e1, e2])
proba = intersection.getSample(1000).computeMean()[0]
print(proba)
assert proba == 0.0, "always false"
assert f2.getCallsNumber() == 0, "intersection prune"
# check batch evaluation
n = 10000
def f1py(x):
x0 = ot.Sample(x).getMarginal(0)
print("eval f1")
assert x0.getSize() == n, "no batch eval"
return x0
def f2py(x):
x1 = ot.Sample(x).getMarginal(1)
print("eval f2")
assert x1.getSize() > 1, "no batch eval"
return x1
f1 = ot.PythonFunction(2, 1, func_sample=f1py)
f2 = ot.PythonFunction(2, 1, func_sample=f2py)
Y1 = ot.CompositeRandomVector(f1, X)
Y2 = ot.CompositeRandomVector(f2, X)
e1 = ot.ThresholdEvent(Y1, ot.Less(), 0.0)
e2 = ot.ThresholdEvent(Y2, ot.Greater(), 0.0)
e3 = ot.UnionEvent([e1, e2])
p3 = e3.getSample(n).computeMean()[0]
ott.assert_almost_equal(p3, 0.75, 1e-2, 1e-2)
e4 = ot.IntersectionEvent([e1, e2])
p4 = e4.getSample(n).computeMean()[0]
ott.assert_almost_equal(p4, 0.25, 1e-2, 1e-2)
|