File: t_FiniteOrthogonalFunctionFactory_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (9 lines) | stat: -rw-r--r-- 5,615 bytes parent folder | download
1
2
3
4
5
6
7
8
9
Factory= FiniteOrthogonalFunctionFactory(functions=[[x0,x1]->[1.0],[x0,x1]->[x0],[x0,x1]->[-4.0 * x0 / 3.0 + 5.0 * x1 / 3.0],[x0,x1]->[-1.0 / sqrt(2.0) + x0^2 / sqrt(2)],[x0,x1]->[-4.0 / 3.0 - 1.885618083165693 * (-1.0 / sqrt(2.0) + x0^2 / sqrt(2.0)) + 5.0 * x0 * x1 / 3.0],[x0,x1]->[2.5141574442076222 + 16.0 / 9.0 * (-1.0 / sqrt(2.0) + x0^2 / sqrt(2.0)) - 3.142696805266918 * x0 * x1 + 25.0 / 9.0 * (-1.0 / sqrt(2.0) + x1^2 / sqrt(2.0))]], measure=Normal(mu = [0,0], sigma = [1,1], R = [[ 1   0.8 ]
 [ 0.8 1   ]]))
Factory= class=FiniteOrthogonalFunctionFactory functions=[class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[x0,x1,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[1.0] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[1.0] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[1.0],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[x0,x1,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[x0] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[x0] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[x0],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[x0,x1,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[-4.0 * x0 / 3.0 + 5.0 * x1 / 3.0] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[-4.0 * x0 / 3.0 + 5.0 * x1 / 3.0] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[-4.0 * x0 / 3.0 + 5.0 * x1 / 3.0],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[x0,x1,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[-1.0 / sqrt(2.0) + x0^2 / sqrt(2)] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[-1.0 / sqrt(2.0) + x0^2 / sqrt(2)] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[-1.0 / sqrt(2.0) + x0^2 / sqrt(2)],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[x0,x1,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[-4.0 / 3.0 - 1.885618083165693 * (-1.0 / sqrt(2.0) + x0^2 / sqrt(2.0)) + 5.0 * x0 * x1 / 3.0] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[-4.0 / 3.0 - 1.885618083165693 * (-1.0 / sqrt(2.0) + x0^2 / sqrt(2.0)) + 5.0 * x0 * x1 / 3.0] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[-4.0 / 3.0 - 1.885618083165693 * (-1.0 / sqrt(2.0) + x0^2 / sqrt(2.0)) + 5.0 * x0 * x1 / 3.0],class=Function name=Unnamed implementation=class=FunctionImplementation name=Unnamed description=[x0,x1,y0] evaluationImplementation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[2.5141574442076222 + 16.0 / 9.0 * (-1.0 / sqrt(2.0) + x0^2 / sqrt(2.0)) - 3.142696805266918 * x0 * x1 + 25.0 / 9.0 * (-1.0 / sqrt(2.0) + x1^2 / sqrt(2.0))] gradientImplementation=class=SymbolicGradient name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[2.5141574442076222 + 16.0 / 9.0 * (-1.0 / sqrt(2.0) + x0^2 / sqrt(2.0)) - 3.142696805266918 * x0 * x1 + 25.0 / 9.0 * (-1.0 / sqrt(2.0) + x1^2 / sqrt(2.0))] hessianImplementation=class=SymbolicHessian name=Unnamed evaluation=class=SymbolicEvaluation name=Unnamed inputVariablesNames=[x0,x1] outputVariablesNames=[y0] formulas=[2.5141574442076222 + 16.0 / 9.0 * (-1.0 / sqrt(2.0) + x0^2 / sqrt(2.0)) - 3.142696805266918 * x0 * x1 + 25.0 / 9.0 * (-1.0 / sqrt(2.0) + x1^2 / sqrt(2.0))]] measure=class=Normal name=Normal dimension=2 mean=class=Point name=Unnamed dimension=2 values=[0,0] sigma=class=Point name=Unnamed dimension=2 values=[1,1] correlationMatrix=class=CorrelationMatrix dimension=2 implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[1,0.8,0.8,1]
FiniteOrthogonalFunction_0([0.5, 0.5])=[1]
FiniteOrthogonalFunction_1([0.5, 0.5])=[0.5]
FiniteOrthogonalFunction_2([0.5, 0.5])=[0.166667]
FiniteOrthogonalFunction_3([0.5, 0.5])=[-0.53033]
FiniteOrthogonalFunction_4([0.5, 0.5])=[0.0833333]
FiniteOrthogonalFunction_5([0.5, 0.5])=[-0.687465]