File: t_Function_python.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (196 lines) | stat: -rwxr-xr-x 4,425 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott
import sys

ot.TESTPREAMBLE()


class FUNC(ot.OpenTURNSPythonFunction):
    def __init__(self):
        super(FUNC, self).__init__(2, 1)
        self.setInputDescription(["R", "S"])
        self.setOutputDescription(["T"])

    def _exec(self, X):
        Y = [X[0] + X[1]]
        return Y


F = FUNC()
print(
    ("in_dim=" + str(F.getInputDimension()) + " out_dim=" + str(F.getOutputDimension()))
)
y = F((10, 5))
assert y == [15.0]
y = F(((10, 5), (6, 7)))
assert y == [[15.0], [13.0]]

# Instance creation
myFunc = ot.Function(F)

# Copy constructor
newFunc = ot.Function(myFunc)

assert myFunc.getInputDimension() == 2
assert myFunc.getOutputDimension() == 1

inPt = ot.Point(2, 2.0)
outPt = myFunc(inPt)
ott.assert_almost_equal(outPt, [4.0])

outPt = myFunc((10.0, 11.0))
ott.assert_almost_equal(outPt, [21.0])

inSample = ot.Sample(10, 2)
for i in range(10):
    inSample[i] = ot.Point((i, i))

outSample = myFunc(inSample)
print((repr(outSample)))
ott.assert_almost_equal(outSample, [[2 * i] for i in range(10)])

outSample = myFunc(((100.0, 100.0), (101.0, 101.0), (102.0, 102.0)))
print((repr(outSample)))
ott.assert_almost_equal(outSample, [[200], [202], [204]])

# test PythonFunction


def a_exec(X):
    Y = [0]
    Y[0] = X[0] + X[1]
    return Y


def a_exec_sample(Xs):
    Ys = []
    for X in Xs:
        Ys.append([X[0] + X[1]])
    return Ys


a_sample = ((100.0, 100.0), (101.0, 101.0), (102.0, 102.0))

print("exec")
myFunc = ot.PythonFunction(2, 1, a_exec)
outSample = myFunc(a_sample)
print(outSample)
ott.assert_almost_equal(outSample, [[200], [202], [204]])

print("exec + exec_sample")
myFunc = ot.PythonFunction(2, 1, a_exec, a_exec_sample)
outSample = myFunc(a_sample)
print(outSample)
ott.assert_almost_equal(outSample, [[200], [202], [204]])

print("exec_sample only on a point")
myFunc = ot.PythonFunction(2, 1, func_sample=a_exec_sample)
outSample = myFunc([100.0, 100.0])
print(outSample)
ott.assert_almost_equal(outSample, [200])

print("exec_sample only on a sample")
myFunc = ot.PythonFunction(2, 1, func_sample=a_exec_sample)
outSample = myFunc(a_sample)
print(outSample)
ott.assert_almost_equal(outSample, [[200], [202], [204]])

# multiprocessing spawn method on win (& osx for py>38) duplicates the output
cpus = -1 if sys.platform.startswith("linux") else None
print("distributed exec only on a point")
myFunc = ot.PythonFunction(2, 1, a_exec, n_cpus=cpus)
outSample = myFunc([100.0, 100.0])
print(outSample)
ott.assert_almost_equal(outSample, [200])

print("distributed exec only on a sample")
myFunc = ot.PythonFunction(2, 1, a_exec, n_cpus=cpus)
outSample = myFunc(a_sample)
print(outSample)
ott.assert_almost_equal(outSample, [[200], [202], [204]])


def a_grad(X):
    # wrong but allows one to verify
    dY = [[1.0], [-1.0]]
    return dY


print("gradient")
myFunc = ot.PythonFunction(2, 1, a_exec, gradient=a_grad)
grad = myFunc.gradient([100.0, 100.0])
print(grad)


def a_hess(X):
    # wrong but allows one to verify
    d2Y = [[[0.1], [0.3]], [[0.3], [0.1]]]
    return d2Y


print("hessian")
myFunc = ot.PythonFunction(2, 1, a_exec, hessian=a_hess)
hess = myFunc.hessian([100.0, 100.0])
print(hess)

print("no func")
try:
    myFunc = ot.PythonFunction(2, 1)
    outSample = myFunc(a_sample)
except Exception:
    # must raise exception
    print("no function detected : ok.")
else:
    raise Exception("no function not detected!")


def a_exec2(X):
    Y = [0]
    if X[0] == 0.0:
        raise RuntimeError("Oups")
    elif X[0] == 1.0:
        "2" + 2
    return Y


for n in range(2):
    myFunc = ot.PythonFunction(1, 1, a_exec2)
    try:
        X = ot.Point(1, n)
        myFunc(X)
    except Exception:
        # print exc
        print("exception handling: ok")


def a_exec3(X):
    X[8000]  # index error
    return [X[0] + X[1]]


myFunc = ot.PythonFunction(2, 1, a_exec3)
with ott.assert_raises(RuntimeError):
    myFunc([5, 6])

f = ot.PythonFunction(0, 3, lambda x: [42.0] * 3)
x = []
y = f(x)
print("y=", y)
ott.assert_almost_equal(y, [42.0] * 3)


class BFunction(ot.OpenTURNSPythonFunction):
    def __init__(self):
        # super().__init__(3, 1)
        pass

    def _exec(self, X):
        return [X[0] + X[1]]


bModel = BFunction()
with ott.assert_raises(RuntimeError):
    # when super is not called in init, should not crash
    bFunction = ot.Function(bModel)