1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
|
FunctionalChaosResult
- input dimension=4
- output dimension=1
- distribution dimension=4
- transformation=4 -> 4
- inverse transformation=4 -> 4
- orthogonal basis dimension=4
- indices size=36
- relative errors=[3.53583e-08]
- residuals=[6.29152e-05]
| Index | Multi-index | Coefficient |
|-------|---------------|---------------|
| 0 | [0,0,0,0] | -8.29758 |
| 1 | [1,0,0,0] | 0.0636641 |
| 2 | [0,1,0,0] | -0.0337627 |
| 3 | [0,0,1,0] | 0.584497 |
| 4 | [0,0,0,1] | -0.00718894 |
| 5 | [2,0,0,0] | -0.0121294 |
| 6 | [1,1,0,0] | -0.0104684 |
| 7 | [1,0,1,0] | 0.00228252 |
| 8 | [1,0,0,1] | -0.00203856 |
| 9 | [0,2,0,0] | 0.0110272 |
| 10 | [0,1,1,0] | -0.00111042 |
| 11 | [0,1,0,1] | 0.00122769 |
| 12 | [0,0,2,0] | 0.000548324 |
| 13 | [0,0,1,1] | -0.00105963 |
| 14 | [0,0,0,2] | 0.000422835 |
| 15 | [3,0,0,0] | -0.00153334 |
| 16 | [2,1,0,0] | 0.00148709 |
| 17 | [1,2,0,0] | 0.00298486 |
| 18 | [0,3,0,0] | -0.00342883 |
| 19 | [4,0,0,0] | -0.00566944 |
| 20 | [2,2,0,0] | -0.000605201 |
| 21 | [0,2,1,1] | 0.000126806 |
| 22 | [3,1,0,1] | -0.000730883 |
| 23 | [0,3,1,1] | -0.000166572 |
| 24 | [3,2,0,1] | 0.000572709 |
| 25 | [3,1,1,1] | -0.000112961 |
| 26 | [2,1,2,1] | 0.000489981 |
| 27 | [1,5,0,0] | 0.00089058 |
| 28 | [0,6,0,0] | -0.00218797 |
| 29 | [0,3,2,1] | -0.000157835 |
| 30 | [0,3,1,2] | -0.000416978 |
| 31 | [0,2,1,3] | 0.000129063 |
| 32 | [3,3,1,0] | -0.00027597 |
| 33 | [3,3,0,1] | -0.000322225 |
| 34 | [2,3,2,0] | 0.000526436 |
| 35 | [2,2,2,1] | 0.000109233 |
<ul>
<li>input dimension: 4</li>
<li>output dimension: 1</li>
<li>distribution dimension: 4</li>
<li>transformation: 4 -> 4</li>
<li>inverse transformation: 4 -> 4</li>
<li>orthogonal basis dimension: 4</li>
<li>indices size: 36</li>
<li>relative errors: [3.53583e-08]</li>
<li>residuals: [6.29152e-05]</li>
</ul>
<table>
<tr>
<th>Index</th>
<th>Multi-index</th>
<th>Coeff.</th>
</tr>
<tr>
<th>0</th>
<td>[0,0,0,0]</td>
<td>-8.29758</td>
</tr>
<tr>
<th>1</th>
<td>[1,0,0,0]</td>
<td>0.06366408</td>
</tr>
<tr>
<th>2</th>
<td>[0,1,0,0]</td>
<td>-0.03376269</td>
</tr>
<tr>
<th>3</th>
<td>[0,0,1,0]</td>
<td>0.5844969</td>
</tr>
<tr>
<th>4</th>
<td>[0,0,0,1]</td>
<td>-0.007188937</td>
</tr>
<tr>
<th>5</th>
<td>[2,0,0,0]</td>
<td>-0.01212942</td>
</tr>
<tr>
<th>6</th>
<td>[1,1,0,0]</td>
<td>-0.01046845</td>
</tr>
<tr>
<th>7</th>
<td>[1,0,1,0]</td>
<td>0.002282517</td>
</tr>
<tr>
<th>8</th>
<td>[1,0,0,1]</td>
<td>-0.00203856</td>
</tr>
<tr>
<th>9</th>
<td>[0,2,0,0]</td>
<td>0.01102717</td>
</tr>
<tr>
<th>10</th>
<td>[0,1,1,0]</td>
<td>-0.001110419</td>
</tr>
<tr>
<th>11</th>
<td>[0,1,0,1]</td>
<td>0.00122769</td>
</tr>
<tr>
<th>12</th>
<td>[0,0,2,0]</td>
<td>0.0005483241</td>
</tr>
<tr>
<th>13</th>
<td>[0,0,1,1]</td>
<td>-0.001059632</td>
</tr>
<tr>
<th>14</th>
<td>[0,0,0,2]</td>
<td>0.0004228353</td>
</tr>
<tr>
<th>15</th>
<td>[3,0,0,0]</td>
<td>-0.001533338</td>
</tr>
<tr>
<th>16</th>
<td>[2,1,0,0]</td>
<td>0.001487086</td>
</tr>
<tr>
<th>17</th>
<td>[1,2,0,0]</td>
<td>0.002984864</td>
</tr>
<tr>
<th>18</th>
<td>[0,3,0,0]</td>
<td>-0.003428825</td>
</tr>
<tr>
<th>19</th>
<td>[4,0,0,0]</td>
<td>-0.005669443</td>
</tr>
<tr>
<th>20</th>
<td>[2,2,0,0]</td>
<td>-0.0006052012</td>
</tr>
<tr>
<th>21</th>
<td>[0,2,1,1]</td>
<td>0.0001268058</td>
</tr>
<tr>
<th>22</th>
<td>[3,1,0,1]</td>
<td>-0.0007308834</td>
</tr>
<tr>
<th>23</th>
<td>[0,3,1,1]</td>
<td>-0.0001665722</td>
</tr>
<tr>
<th>24</th>
<td>[3,2,0,1]</td>
<td>0.0005727085</td>
</tr>
<tr>
<th>25</th>
<td>[3,1,1,1]</td>
<td>-0.0001129613</td>
</tr>
<tr>
<th>26</th>
<td>[2,1,2,1]</td>
<td>0.0004899807</td>
</tr>
<tr>
<th>27</th>
<td>[1,5,0,0]</td>
<td>0.0008905801</td>
</tr>
<tr>
<th>28</th>
<td>[0,6,0,0]</td>
<td>-0.002187966</td>
</tr>
<tr>
<th>29</th>
<td>[0,3,2,1]</td>
<td>-0.0001578355</td>
</tr>
<tr>
<th>30</th>
<td>[0,3,1,2]</td>
<td>-0.0004169784</td>
</tr>
<tr>
<th>31</th>
<td>[0,2,1,3]</td>
<td>0.000129063</td>
</tr>
<tr>
<th>32</th>
<td>[3,3,1,0]</td>
<td>-0.0002759699</td>
</tr>
<tr>
<th>33</th>
<td>[3,3,0,1]</td>
<td>-0.0003222245</td>
</tr>
<tr>
<th>34</th>
<td>[2,3,2,0]</td>
<td>0.000526436</td>
</tr>
<tr>
<th>35</th>
<td>[2,2,2,1]</td>
<td>0.0001092328</td>
</tr>
</table>
FunctionalChaosResult
- input dimension=4
- output dimension=1
- distribution dimension=4
- transformation=4 -> 4
- inverse transformation=4 -> 4
- orthogonal basis dimension=4
- indices size=36
- relative errors=[3.53583e-08]
- residuals=[6.29152e-05]
| Index | Multi-index | Coefficient |
|-------|---------------|---------------|
| 0 | [0,0,0,0] | -8.29758 |
| 1 | [1,0,0,0] | 0.0636641 |
| 2 | [0,1,0,0] | -0.0337627 |
| 3 | [0,0,1,0] | 0.584497 |
| 4 | [0,0,0,1] | -0.00718894 |
| 5 | [2,0,0,0] | -0.0121294 |
| 6 | [1,1,0,0] | -0.0104684 |
| 7 | [1,0,1,0] | 0.00228252 |
| 8 | [1,0,0,1] | -0.00203856 |
| 9 | [0,2,0,0] | 0.0110272 |
| 10 | [0,1,1,0] | -0.00111042 |
| 11 | [0,1,0,1] | 0.00122769 |
| 12 | [0,0,2,0] | 0.000548324 |
| 13 | [0,0,1,1] | -0.00105963 |
| 14 | [0,0,0,2] | 0.000422835 |
| 15 | [3,0,0,0] | -0.00153334 |
| 16 | [2,1,0,0] | 0.00148709 |
| 17 | [1,2,0,0] | 0.00298486 |
| 18 | [0,3,0,0] | -0.00342883 |
| 19 | [4,0,0,0] | -0.00566944 |
| 20 | [2,2,0,0] | -0.000605201 |
| 21 | [0,2,1,1] | 0.000126806 |
| 22 | [3,1,0,1] | -0.000730883 |
| 23 | [0,3,1,1] | -0.000166572 |
| 24 | [3,2,0,1] | 0.000572709 |
| 25 | [3,1,1,1] | -0.000112961 |
| 26 | [2,1,2,1] | 0.000489981 |
| 27 | [1,5,0,0] | 0.00089058 |
| 28 | [0,6,0,0] | -0.00218797 |
| 29 | [0,3,2,1] | -0.000157835 |
| 30 | [0,3,1,2] | -0.000416978 |
| 31 | [0,2,1,3] | 0.000129063 |
| 32 | [3,3,1,0] | -0.00027597 |
| 33 | [3,3,0,1] | -0.000322225 |
| 34 | [2,3,2,0] | 0.000526436 |
| 35 | [2,2,2,1] | 0.000109233 |
FunctionalChaosResult
- input dimension=4
- output dimension=20
- distribution dimension=4
- transformation=4 -> 4
- inverse transformation=4 -> 4
- orthogonal basis dimension=4
- indices size=56
- relative errors=[2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.63063e-06,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07]#20
- residuals=[0.000216145,0.000216145,0.000216145,0.000216145,0.000216145,0.000216145,0.000216145,0.000216145,0.000585276,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432]#20
| Index | Multi-index | Coeff. #0 | Coeff. #1 | Coeff. #2 | ... | Coeff. #17 | Coeff. #18 | Coeff. #19 |
|-------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 0 | [0,0,0,0] | -8.29756 | -7.29756 | -6.29756 | ... | 8.70243 | 9.70243 | 10.7024 |
| 1 | [1,0,0,0] | 0.0639501 | 0.0639501 | 0.0639501 | ... | 0.0640074 | 0.0640074 | 0.0640074 |
| 2 | [0,1,0,0] | -0.0336704 | -0.0336704 | -0.0336704 | ... | -0.0336164 | -0.0336164 | -0.0336164 |
| ... | | | | | ... | | | |
| 53 | [1,0,1,5] | 0 | 0 | 0 | ... | 0 | 0 | 0 |
| 54 | [1,0,0,6] | 0 | 0 | 0 | ... | 0 | 0 | 0 |
| 55 | [0,0,1,6] | 0 | 0 | 0 | ... | 0 | 0 | 0 |
<ul>
<li>input dimension: 4</li>
<li>output dimension: 20</li>
<li>distribution dimension: 4</li>
<li>transformation: 4 -> 4</li>
<li>inverse transformation: 4 -> 4</li>
<li>orthogonal basis dimension: 4</li>
<li>indices size: 56</li>
<li>relative errors: [2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.63063e-06,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07]#20</li>
<li>residuals: [0.000216145,0.000216145,0.000216145,0.000216145,0.000216145,0.000216145,0.000216145,0.000216145,0.000585276,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432]#20</li>
</ul>
<table>
<tr>
<th>Index</th>
<th>Multi-index</th>
<th>Coeff.#0</th>
<th>Coeff.#1</th>
<th>Coeff.#2</th>
<th>...</th>
<th>Coeff.#17</th>
<th>Coeff.#18</th>
<th>Coeff.#19</th>
</tr>
<tr>
<th>0</th>
<td>[0,0,0,0]</td>
<td>-8.297564</td>
<td>-7.297564</td>
<td>-6.297564</td>
<td>...</td>
<td>8.702431</td>
<td>9.702431</td>
<td>10.70243</td>
</tr>
<tr>
<th>1</th>
<td>[1,0,0,0]</td>
<td>0.06395006</td>
<td>0.06395006</td>
<td>0.06395006</td>
<td>...</td>
<td>0.06400735</td>
<td>0.06400735</td>
<td>0.06400735</td>
</tr>
<tr>
<th>2</th>
<td>[0,1,0,0]</td>
<td>-0.03367039</td>
<td>-0.03367039</td>
<td>-0.03367039</td>
<td>...</td>
<td>-0.03361636</td>
<td>-0.03361636</td>
<td>-0.03361636</td>
</tr>
<tr>
<td colspan="9">...</td>
</tr>
<tr>
<th>53</th>
<td>[1,0,1,5]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<th>54</th>
<td>[1,0,0,6]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<th>55</th>
<td>[0,0,1,6]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</table>
FunctionalChaosResult
- input dimension=4
- output dimension=20
- distribution dimension=4
- transformation=4 -> 4
- inverse transformation=4 -> 4
- orthogonal basis dimension=4
- indices size=56
- relative errors=[2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.5095e-07,2.63063e-06,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07,2.47909e-07]#20
- residuals=[0.000216145,0.000216145,0.000216145,0.000216145,0.000216145,0.000216145,0.000216145,0.000216145,0.000585276,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432,0.000216432]#20
| Index | Multi-index | Coeff. #0 | Coeff. #1 | Coeff. #2 | ... | Coeff. #17 | Coeff. #18 | Coeff. #19 |
|-------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 0 | [0,0,0,0] | -8.29756 | -7.29756 | -6.29756 | ... | 8.70243 | 9.70243 | 10.7024 |
| 1 | [1,0,0,0] | 0.0639501 | 0.0639501 | 0.0639501 | ... | 0.0640074 | 0.0640074 | 0.0640074 |
| 2 | [0,1,0,0] | -0.0336704 | -0.0336704 | -0.0336704 | ... | -0.0336164 | -0.0336164 | -0.0336164 |
| ... | | | | | ... | | | |
| 53 | [1,0,1,5] | 0 | 0 | 0 | ... | 0 | 0 | 0 |
| 54 | [1,0,0,6] | 0 | 0 | 0 | ... | 0 | 0 | 0 |
| 55 | [0,0,1,6] | 0 | 0 | 0 | ... | 0 | 0 | 0 |
Composed metamodel =
<ul>
<li> Input dimension = 4 </li>
<li> Input description = [x0,x1,x2,x3] </li>
<li> Output dimension = 20 </li>
<li> Size = 56 </li>
</ul>
<table>
<tr>
<th>Coefficient</th>
<th>Function</th>
</tr>
<tr>
<td>[-8.29756,-7.29756,-6.29756,-5.29756,-4.29756,-3.29756,-2.29756,-1.29756,-0.298914,0.702431,1.70243,2.70243,3.70243,4.70243,5.70243,6.70243,7.70243,8.70243,9.70243,10.7024]#20</td>
<td>1</td>
</tr>
<tr>
<td>[0.0639501,0.0639501,0.0639501,0.0639501,0.0639501,0.0639501,0.0639501,0.0639501,0.0627427,0.0640074,0.0640074,0.0640074,0.0640074,0.0640074,0.0640074,0.0640074,0.0640074,0.0640074,0.0640074,0.0640074]#20</td>
<td>-1.87569 + 0.00140172 <span>×</span> x0</td>
</tr>
<tr>
<td>[-0.0336704,-0.0336704,-0.0336704,-0.0336704,-0.0336704,-0.0336704,-0.0336704,-0.0336704,-0.0345953,-0.0336164,-0.0336164,-0.0336164,-0.0336164,-0.0336164,-0.0336164,-0.0336164,-0.0336164,-0.0336164,-0.0336164,-0.0336164]#20</td>
<td>-4.00121 + 0.133369 <span>×</span> x1</td>
</tr>
<tr>
<td>[0.584264,0.584264,0.584264,0.584264,0.584264,0.584264,0.584264,0.584264,0.584287,0.584274,0.584274,0.584274,0.584274,0.584274,0.584274,0.584274,0.584274,0.584274,0.584274,0.584274]#20</td>
<td>1.73205 <span>×</span> x2</td>
</tr>
<tr>
<td>[-0.00708706,-0.00708706,-0.00708706,-0.00708706,-0.00708706,-0.00708706,-0.00708706,-0.00708706,0,-0.00708762,-0.00708762,-0.00708762,-0.00708762,-0.00708762,-0.00708762,-0.00708762,-0.00708762,-0.00708762,-0.00708762,-0.00708762]#20</td>
<td>1.73205 <span>×</span> x3</td>
</tr>
<tr>
<td>[-0.00994781,-0.00994781,-0.00994781,-0.00994781,-0.00994781,-0.00994781,-0.00994781,-0.00994781,-0.0117515,-0.00993288,-0.00993288,-0.00993288,-0.00993288,-0.00993288,-0.00993288,-0.00993288,-0.00993288,-0.00993288,-0.00993288,-0.00993288]#20</td>
<td>2.66787 - 0.00391513 <span>×</span> x0 + 1.11808e-06 <span>×</span> x0<sup>2</sup></td>
</tr>
<tr>
<td>[-0.0103194,-0.0103194,-0.0103194,-0.0103194,-0.0103194,-0.0103194,-0.0103194,-0.0103194,0,-0.0102764,-0.0102764,-0.0102764,-0.0102764,-0.0102764,-0.0102764,-0.0102764,-0.0102764,-0.0102764,-0.0102764,-0.0102764]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (-4.00121 + 0.133369 <span>×</span> x1)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.0027732,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> 1.73205 <span>×</span> x2</td>
</tr>
<tr>
<td>[0.0114017,0.0114017,0.0114017,0.0114017,0.0114017,0.0114017,0.0114017,0.0114017,0.0120432,0.0113954,0.0113954,0.0113954,0.0113954,0.0113954,0.0113954,0.0113954,0.0113954,0.0113954,0.0113954,0.0113954]#20</td>
<td>10.6377 - 0.756185 <span>×</span> x1 + 0.0125995 <span>×</span> x1<sup>2</sup></td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,9.96362e-05,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>-1.11803 + 3.3541 <span>×</span> x2<sup>2</sup></td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.00057888,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>1.73205 <span>×</span> x2 <span>×</span> 1.73205 <span>×</span> x3</td>
</tr>
<tr>
<td>[0.00304399,0.00304399,0.00304399,0.00304399,0.00304399,0.00304399,0.00304399,0.00304399,0,0.00304077,0.00304077,0.00304077,0.00304077,0.00304077,0.00304077,0.00304077,0.00304077,0.00304077,0.00304077,0.00304077]#20</td>
<td>-3.35707 + 0.00734507 <span>×</span> x0 - 4.12446e-06 <span>×</span> x0<sup>2</sup> + 6.20008e-10 <span>×</span> x0<sup>3</sup></td>
</tr>
<tr>
<td>[0.0020856,0.0020856,0.0020856,0.0020856,0.0020856,0.0020856,0.0020856,0.0020856,0,0.00226104,0.00226104,0.00226104,0.00226104,0.00226104,0.00226104,0.00226104,0.00226104,0.00226104,0.00226104,0.00226104]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (10.6377 - 0.756185 <span>×</span> x1 + 0.0125995 <span>×</span> x1<sup>2</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.000921093,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (-1.11803 + 3.3541 <span>×</span> x2<sup>2</sup>)</td>
</tr>
<tr>
<td>[-0.00418823,-0.00418823,-0.00418823,-0.00418823,-0.00418823,-0.00418823,-0.00418823,-0.00418823,0,-0.00408129,-0.00408129,-0.00408129,-0.00408129,-0.00408129,-0.00408129,-0.00408129,-0.00408129,-0.00408129,-0.00408129,-0.00408129]#20</td>
<td>-21.59 + 2.48511 <span>×</span> x1 - 0.0881978 <span>×</span> x1<sup>2</sup> + 0.000978555 <span>×</span> x1<sup>3</sup></td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.00170031,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(10.6377 - 0.756185 <span>×</span> x1 + 0.0125995 <span>×</span> x1<sup>2</sup>) <span>×</span> 1.73205 <span>×</span> x2</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.00225372,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(10.6377 - 0.756185 <span>×</span> x1 + 0.0125995 <span>×</span> x1<sup>2</sup>) <span>×</span> 1.73205 <span>×</span> x3</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.00260801,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-4.00121 + 0.133369 <span>×</span> x1) <span>×</span> (-1.11803 + 3.3541 <span>×</span> x2<sup>2</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.000852122,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-4.00121 + 0.133369 <span>×</span> x1) <span>×</span> (-1.11803 + 3.3541 <span>×</span> x3<sup>2</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.00127259,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>-3.96863 <span>×</span> x2 + 6.61438 <span>×</span> x2<sup>3</sup></td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.000337234,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.11803 + 3.3541 <span>×</span> x2<sup>2</sup>) <span>×</span> 1.73205 <span>×</span> x3</td>
</tr>
<tr>
<td>[-0.00274388,-0.00274388,-0.00274388,-0.00274388,-0.00274388,-0.00274388,-0.00274388,-0.00274388,0,-0.00273346,-0.00273346,-0.00273346,-0.00273346,-0.00273346,-0.00273346,-0.00273346,-0.00273346,-0.00273346,-0.00273346,-0.00273346]#20</td>
<td>3.93911 - 0.0115182 <span>×</span> x0 + 9.61616e-06 <span>×</span> x0<sup>2</sup> - 2.85793e-09 <span>×</span> x0<sup>3</sup> + 2.63491e-13 <span>×</span> x0<sup>4</sup></td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.0035371,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(2.66787 - 0.00391513 <span>×</span> x0 + 1.11808e-06 <span>×</span> x0<sup>2</sup>) <span>×</span> 1.73205 <span>×</span> x2 <span>×</span> 1.73205 <span>×</span> x3</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.000802261,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> 1.73205 <span>×</span> x2 <span>×</span> (-1.11803 + 3.3541 <span>×</span> x3<sup>2</sup>)</td>
</tr>
<tr>
<td>[-0.00227237,-0.00227237,-0.00227237,-0.00227237,-0.00227237,-0.00227237,-0.00227237,-0.00227237,0,-0.00242445,-0.00242445,-0.00242445,-0.00242445,-0.00242445,-0.00242445,-0.00242445,-0.00242445,-0.00242445,-0.00242445,-0.00242445]#20</td>
<td>(-21.59 + 2.48511 <span>×</span> x1 - 0.0881978 <span>×</span> x1<sup>2</sup> + 0.000978555 <span>×</span> x1<sup>3</sup>) <span>×</span> 1.73205 <span>×</span> x3</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.00126332,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-4.00121 + 0.133369 <span>×</span> x1) <span>×</span> (-3.96863 <span>×</span> x2 + 6.61438 <span>×</span> x2<sup>3</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.000217839,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>1.125 - 11.25 <span>×</span> x2<sup>2</sup> + 13.125 <span>×</span> x2<sup>4</sup></td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.00131871,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>1.125 - 11.25 <span>×</span> x3<sup>2</sup> + 13.125 <span>×</span> x3<sup>4</sup></td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.00165501,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(2.66787 - 0.00391513 <span>×</span> x0 + 1.11808e-06 <span>×</span> x0<sup>2</sup>) <span>×</span> (-4.00121 + 0.133369 <span>×</span> x1) <span>×</span> (-1.11803 + 3.3541 <span>×</span> x2<sup>2</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.00241226,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(2.66787 - 0.00391513 <span>×</span> x0 + 1.11808e-06 <span>×</span> x0<sup>2</sup>) <span>×</span> 1.73205 <span>×</span> x2 <span>×</span> (-1.11803 + 3.3541 <span>×</span> x3<sup>2</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.00239649,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (10.6377 - 0.756185 <span>×</span> x1 + 0.0125995 <span>×</span> x1<sup>2</sup>) <span>×</span> (-1.11803 + 3.3541 <span>×</span> x3<sup>2</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.00104576,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (-4.00121 + 0.133369 <span>×</span> x1) <span>×</span> (-3.96863 <span>×</span> x2 + 6.61438 <span>×</span> x2<sup>3</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.000476318,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (-4.00121 + 0.133369 <span>×</span> x1) <span>×</span> 1.73205 <span>×</span> x2 <span>×</span> (-1.11803 + 3.3541 <span>×</span> x3<sup>2</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.000750135,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (1.125 - 11.25 <span>×</span> x3<sup>2</sup> + 13.125 <span>×</span> x3<sup>4</sup>)</td>
</tr>
<tr>
<td>[0.00098758,0.00098758,0.00098758,0.00098758,0.00098758,0.00098758,0.00098758,0.00098758,0,0.000915445,0.000915445,0.000915445,0.000915445,0.000915445,0.000915445,0.000915445,0.000915445,0.000915445,0.000915445,0.000915445]#20</td>
<td>(35.6274 - 5.99016 <span>×</span> x1 + 0.342712 <span>×</span> x1<sup>2</sup> - 0.00807257 <span>×</span> x1<sup>3</sup> + 6.69375e-05 <span>×</span> x1<sup>4</sup>) <span>×</span> 1.73205 <span>×</span> x3</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.00151753,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-21.59 + 2.48511 <span>×</span> x1 - 0.0881978 <span>×</span> x1<sup>2</sup> + 0.000978555 <span>×</span> x1<sup>3</sup>) <span>×</span> (-1.11803 + 3.3541 <span>×</span> x3<sup>2</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.000192616,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(10.6377 - 0.756185 <span>×</span> x1 + 0.0125995 <span>×</span> x1<sup>2</sup>) <span>×</span> (-3.96863 <span>×</span> x3 + 6.61438 <span>×</span> x3<sup>3</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,2.90669e-05,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>6.21867 <span>×</span> x2 - 29.0205 <span>×</span> x2<sup>3</sup> + 26.1184 <span>×</span> x2<sup>5</sup></td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.000986842,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-3.35707 + 0.00734507 <span>×</span> x0 - 4.12446e-06 <span>×</span> x0<sup>2</sup> + 6.20008e-10 <span>×</span> x0<sup>3</sup>) <span>×</span> (-3.96863 <span>×</span> x3 + 6.61438 <span>×</span> x3<sup>3</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.000332604,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (-21.59 + 2.48511 <span>×</span> x1 - 0.0881978 <span>×</span> x1<sup>2</sup> + 0.000978555 <span>×</span> x1<sup>3</sup>) <span>×</span> (-1.11803 + 3.3541 <span>×</span> x2<sup>2</sup>)</td>
</tr>
<tr>
<td>[-0.000271509,-0.000271509,-0.000271509,-0.000271509,-0.000271509,-0.000271509,-0.000271509,-0.000271509,0,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (-21.59 + 2.48511 <span>×</span> x1 - 0.0881978 <span>×</span> x1<sup>2</sup> + 0.000978555 <span>×</span> x1<sup>3</sup>) <span>×</span> (-1.11803 + 3.3541 <span>×</span> x3<sup>2</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.00135063,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (6.21867 <span>×</span> x3 - 29.0205 <span>×</span> x3<sup>3</sup> + 26.1184 <span>×</span> x3<sup>5</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.00236117,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>63.4174 - 20.0089 <span>×</span> x1 + 2.24735 <span>×</span> x1<sup>2</sup> - 0.120561 <span>×</span> x1<sup>3</sup> + 0.00334188 <span>×</span> x1<sup>4</sup> - 4.61067e-05 <span>×</span> x1<sup>5</sup> + 2.50028e-07 <span>×</span> x1<sup>6</sup></td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.00221572,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-50.2377 + 11.7408 <span>×</span> x1 - 0.969964 <span>×</span> x1<sup>2</sup> + 0.0365412 <span>×</span> x1<sup>3</sup> - 0.00063952 <span>×</span> x1<sup>4</sup> + 4.2109e-06 <span>×</span> x1<sup>5</sup>) <span>×</span> 1.73205 <span>×</span> x2</td>
</tr>
<tr>
<td>[-0.00325289,-0.00325289,-0.00325289,-0.00325289,-0.00325289,-0.00325289,-0.00325289,-0.00325289,0,-0.00341084,-0.00341084,-0.00341084,-0.00341084,-0.00341084,-0.00341084,-0.00341084,-0.00341084,-0.00341084,-0.00341084,-0.00341084]#20</td>
<td>(-50.2377 + 11.7408 <span>×</span> x1 - 0.969964 <span>×</span> x1<sup>2</sup> + 0.0365412 <span>×</span> x1<sup>3</sup> - 0.00063952 <span>×</span> x1<sup>4</sup> + 4.2109e-06 <span>×</span> x1<sup>5</sup>) <span>×</span> 1.73205 <span>×</span> x3</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.00363071,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-21.59 + 2.48511 <span>×</span> x1 - 0.0881978 <span>×</span> x1<sup>2</sup> + 0.000978555 <span>×</span> x1<sup>3</sup>) <span>×</span> (-3.96863 <span>×</span> x2 + 6.61438 <span>×</span> x2<sup>3</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.000265954,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-3.35707 + 0.00734507 <span>×</span> x0 - 4.12446e-06 <span>×</span> x0<sup>2</sup> + 6.20008e-10 <span>×</span> x0<sup>3</sup>) <span>×</span> (-4.00121 + 0.133369 <span>×</span> x1) <span>×</span> 1.73205 <span>×</span> x2 <span>×</span> (-1.11803 + 3.3541 <span>×</span> x3<sup>2</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.00103441,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-3.35707 + 0.00734507 <span>×</span> x0 - 4.12446e-06 <span>×</span> x0<sup>2</sup> + 6.20008e-10 <span>×</span> x0<sup>3</sup>) <span>×</span> (1.125 - 11.25 <span>×</span> x2<sup>2</sup> + 13.125 <span>×</span> x2<sup>4</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.00315489,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(2.66787 - 0.00391513 <span>×</span> x0 + 1.11808e-06 <span>×</span> x0<sup>2</sup>) <span>×</span> (-4.00121 + 0.133369 <span>×</span> x1) <span>×</span> (-1.11803 + 3.3541 <span>×</span> x2<sup>2</sup>) <span>×</span> (-1.11803 + 3.3541 <span>×</span> x3<sup>2</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.00231383,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (-50.2377 + 11.7408 <span>×</span> x1 - 0.969964 <span>×</span> x1<sup>2</sup> + 0.0365412 <span>×</span> x1<sup>3</sup> - 0.00063952 <span>×</span> x1<sup>4</sup> + 4.2109e-06 <span>×</span> x1<sup>5</sup>) <span>×</span> 1.73205 <span>×</span> x2</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.000275197,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (-4.00121 + 0.133369 <span>×</span> x1) <span>×</span> (1.125 - 11.25 <span>×</span> x2<sup>2</sup> + 13.125 <span>×</span> x2<sup>4</sup>) <span>×</span> 1.73205 <span>×</span> x3</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.000330104,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (-4.00121 + 0.133369 <span>×</span> x1) <span>×</span> (6.21867 <span>×</span> x3 - 29.0205 <span>×</span> x3<sup>3</sup> + 26.1184 <span>×</span> x3<sup>5</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.000542696,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (-1.12673 + 23.6614 <span>×</span> x2<sup>2</sup> - 70.9843 <span>×</span> x2<sup>4</sup> + 52.0551 <span>×</span> x2<sup>6</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.000739843,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> 1.73205 <span>×</span> x2 <span>×</span> (6.21867 <span>×</span> x3 - 29.0205 <span>×</span> x3<sup>3</sup> + 26.1184 <span>×</span> x3<sup>5</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,-0.000367056,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>(-1.87569 + 0.00140172 <span>×</span> x0) <span>×</span> (-1.12673 + 23.6614 <span>×</span> x3<sup>2</sup> - 70.9843 <span>×</span> x3<sup>4</sup> + 52.0551 <span>×</span> x3<sup>6</sup>)</td>
</tr>
<tr>
<td>[0,0,0,0,0,0,0,0,0.00225843,0,0,0,0,0,0,0,0,0,0,0]#20</td>
<td>1.73205 <span>×</span> x2 <span>×</span> (-1.12673 + 23.6614 <span>×</span> x3<sup>2</sup> - 70.9843 <span>×</span> x3<sup>4</sup> + 52.0551 <span>×</span> x3<sup>6</sup>)</td>
</tr>
</table>
Metamodel =
<p>([-8.29756,-7.29756,-6.29756,-5.29756,-4.29756,-3.29756,-2.29756,-1.29756,-0.298914,0.702431,1.70243,2.70243,3.70243,4.70243,5.70243,6.70243,7.70243,8.70243,9.70243,10.7024]#20 + [0.0639501,0.0639501,0.0639501,0.0639501,0.0639501,0.0639501,0.0639501,0.0639501,0.0627427,0.0640074,0.0640074,0.0640074,0.0640074,0.0640074,0.0640074,0.0640074,0.0640074,0.0640074,0.0640074,0.0640074]#20 * (-1.87569 + 0.00140172 * x0) + [-0.0336704,-0.0336704,-0.0336704,-0.0336704,-0.0336704,-0.0336704,-0.0336704,-0.0336704,-0.0345953,-0.0336164,-0.0336164,-0.0336164,-0.0336164,-0.0336164,-0.0336164,-0.0336164,-0.0336164,-0.0336164,-0.0336164,-0.0336164]#20 * (-4.00121 + 0.133369 * x1) + [0.584264,0.584264,0.584264,0.584264,0.584264,0.584264,0.584264,0.584264,0.584287,0.584274,0.584274,0.584274,0.584274,0.584274,0.584274,0.584274,0.584274,0.584274,0.584274,0.584274]#20 * (1.73205 * x2) + [-0.00708706,-0.00708706,-0.00708706,-0.00708706,-0.00708706,-0.00708706,-0.00708706,-0.00708706,0,-0.00708762,-0.00708762,-0.00708762,-0.00708762,-0.00708762,-0.00708762,-0.00708762,-0.00708762,-0.00708762,-0.00708762,-0.00708762]#20 * (1.73205 * x3) + [-0.00994781,-0.00994781,-0.00994781,-0.00994781,-0.00994781,-0.00994781,-0.00994781,-0.00994781,-0.0117515,-0.00993288,-0.00993288,-0.00993288,-0.00993288,-0.00993288,-0.00993288,-0.00993288,-0.00993288,-0.00993288,-0.00993288,-0.00993288]#20 * (2.66787 - 0.00391513 * x0 + 1.11808e-06 * x0^2) + [-0.0103194,-0.0103194,-0.0103194,-0.0103194,-0.0103194,-0.0103194,-0.0103194,-0.0103194,0,-0.0102764,-0.0102764,-0.0102764,-0.0102764,-0.0102764,-0.0102764,-0.0102764,-0.0102764,-0.0102764,-0.0102764,-0.0102764]#20 * ((-1.87569 + 0.00140172 * x0) * (-4.00121 + 0.133369 * x1)) + [0,0,0,0,0,0,0,0,0.0027732,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (1.73205 * x2)) + [0.0114017,0.0114017,0.0114017,0.0114017,0.0114017,0.0114017,0.0114017,0.0114017,0.0120432,0.0113954,0.0113954,0.0113954,0.0113954,0.0113954,0.0113954,0.0113954,0.0113954,0.0113954,0.0113954,0.0113954]#20 * (10.6377 - 0.756185 * x1 + 0.0125995 * x1^2) + [0,0,0,0,0,0,0,0,9.96362e-05,0,0,0,0,0,0,0,0,0,0,0]#20 * (-1.11803 + 3.3541 * x2^2) + [0,0,0,0,0,0,0,0,-0.00057888,0,0,0,0,0,0,0,0,0,0,0]#20 * ((1.73205 * x2) * (1.73205 * x3)) + [0.00304399,0.00304399,0.00304399,0.00304399,0.00304399,0.00304399,0.00304399,0.00304399,0,0.00304077,0.00304077,0.00304077,0.00304077,0.00304077,0.00304077,0.00304077,0.00304077,0.00304077,0.00304077,0.00304077]#20 * (-3.35707 + 0.00734507 * x0 - 4.12446e-06 * x0^2 + 6.20008e-10 * x0^3) + [0.0020856,0.0020856,0.0020856,0.0020856,0.0020856,0.0020856,0.0020856,0.0020856,0,0.00226104,0.00226104,0.00226104,0.00226104,0.00226104,0.00226104,0.00226104,0.00226104,0.00226104,0.00226104,0.00226104]#20 * ((-1.87569 + 0.00140172 * x0) * (10.6377 - 0.756185 * x1 + 0.0125995 * x1^2)) + [0,0,0,0,0,0,0,0,-0.000921093,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (-1.11803 + 3.3541 * x2^2)) + [-0.00418823,-0.00418823,-0.00418823,-0.00418823,-0.00418823,-0.00418823,-0.00418823,-0.00418823,0,-0.00408129,-0.00408129,-0.00408129,-0.00408129,-0.00408129,-0.00408129,-0.00408129,-0.00408129,-0.00408129,-0.00408129,-0.00408129]#20 * (-21.59 + 2.48511 * x1 - 0.0881978 * x1^2 + 0.000978555 * x1^3) + [0,0,0,0,0,0,0,0,0.00170031,0,0,0,0,0,0,0,0,0,0,0]#20 * ((10.6377 - 0.756185 * x1 + 0.0125995 * x1^2) * (1.73205 * x2)) + [0,0,0,0,0,0,0,0,0.00225372,0,0,0,0,0,0,0,0,0,0,0]#20 * ((10.6377 - 0.756185 * x1 + 0.0125995 * x1^2) * (1.73205 * x3)) + [0,0,0,0,0,0,0,0,0.00260801,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-4.00121 + 0.133369 * x1) * (-1.11803 + 3.3541 * x2^2)) + [0,0,0,0,0,0,0,0,-0.000852122,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-4.00121 + 0.133369 * x1) * (-1.11803 + 3.3541 * x3^2)) + [0,0,0,0,0,0,0,0,-0.00127259,0,0,0,0,0,0,0,0,0,0,0]#20 * (-3.96863 * x2 + 6.61438 * x2^3) + [0,0,0,0,0,0,0,0,0.000337234,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.11803 + 3.3541 * x2^2) * (1.73205 * x3)) + [-0.00274388,-0.00274388,-0.00274388,-0.00274388,-0.00274388,-0.00274388,-0.00274388,-0.00274388,0,-0.00273346,-0.00273346,-0.00273346,-0.00273346,-0.00273346,-0.00273346,-0.00273346,-0.00273346,-0.00273346,-0.00273346,-0.00273346]#20 * (3.93911 - 0.0115182 * x0 + 9.61616e-06 * x0^2 - 2.85793e-09 * x0^3 + 2.63491e-13 * x0^4) + [0,0,0,0,0,0,0,0,-0.0035371,0,0,0,0,0,0,0,0,0,0,0]#20 * ((2.66787 - 0.00391513 * x0 + 1.11808e-06 * x0^2) * (1.73205 * x2) * (1.73205 * x3)) + [0,0,0,0,0,0,0,0,-0.000802261,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (1.73205 * x2) * (-1.11803 + 3.3541 * x3^2)) + [-0.00227237,-0.00227237,-0.00227237,-0.00227237,-0.00227237,-0.00227237,-0.00227237,-0.00227237,0,-0.00242445,-0.00242445,-0.00242445,-0.00242445,-0.00242445,-0.00242445,-0.00242445,-0.00242445,-0.00242445,-0.00242445,-0.00242445]#20 * ((-21.59 + 2.48511 * x1 - 0.0881978 * x1^2 + 0.000978555 * x1^3) * (1.73205 * x3)) + [0,0,0,0,0,0,0,0,-0.00126332,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-4.00121 + 0.133369 * x1) * (-3.96863 * x2 + 6.61438 * x2^3)) + [0,0,0,0,0,0,0,0,-0.000217839,0,0,0,0,0,0,0,0,0,0,0]#20 * (1.125 - 11.25 * x2^2 + 13.125 * x2^4) + [0,0,0,0,0,0,0,0,-0.00131871,0,0,0,0,0,0,0,0,0,0,0]#20 * (1.125 - 11.25 * x3^2 + 13.125 * x3^4) + [0,0,0,0,0,0,0,0,-0.00165501,0,0,0,0,0,0,0,0,0,0,0]#20 * ((2.66787 - 0.00391513 * x0 + 1.11808e-06 * x0^2) * (-4.00121 + 0.133369 * x1) * (-1.11803 + 3.3541 * x2^2)) + [0,0,0,0,0,0,0,0,0.00241226,0,0,0,0,0,0,0,0,0,0,0]#20 * ((2.66787 - 0.00391513 * x0 + 1.11808e-06 * x0^2) * (1.73205 * x2) * (-1.11803 + 3.3541 * x3^2)) + [0,0,0,0,0,0,0,0,0.00239649,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (10.6377 - 0.756185 * x1 + 0.0125995 * x1^2) * (-1.11803 + 3.3541 * x3^2)) + [0,0,0,0,0,0,0,0,-0.00104576,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (-4.00121 + 0.133369 * x1) * (-3.96863 * x2 + 6.61438 * x2^3)) + [0,0,0,0,0,0,0,0,0.000476318,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (-4.00121 + 0.133369 * x1) * (1.73205 * x2) * (-1.11803 + 3.3541 * x3^2)) + [0,0,0,0,0,0,0,0,-0.000750135,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (1.125 - 11.25 * x3^2 + 13.125 * x3^4)) + [0.00098758,0.00098758,0.00098758,0.00098758,0.00098758,0.00098758,0.00098758,0.00098758,0,0.000915445,0.000915445,0.000915445,0.000915445,0.000915445,0.000915445,0.000915445,0.000915445,0.000915445,0.000915445,0.000915445]#20 * ((35.6274 - 5.99016 * x1 + 0.342712 * x1^2 - 0.00807257 * x1^3 + 6.69375e-05 * x1^4) * (1.73205 * x3)) + [0,0,0,0,0,0,0,0,-0.00151753,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-21.59 + 2.48511 * x1 - 0.0881978 * x1^2 + 0.000978555 * x1^3) * (-1.11803 + 3.3541 * x3^2)) + [0,0,0,0,0,0,0,0,-0.000192616,0,0,0,0,0,0,0,0,0,0,0]#20 * ((10.6377 - 0.756185 * x1 + 0.0125995 * x1^2) * (-3.96863 * x3 + 6.61438 * x3^3)) + [0,0,0,0,0,0,0,0,2.90669e-05,0,0,0,0,0,0,0,0,0,0,0]#20 * (6.21867 * x2 - 29.0205 * x2^3 + 26.1184 * x2^5) + [0,0,0,0,0,0,0,0,-0.000986842,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-3.35707 + 0.00734507 * x0 - 4.12446e-06 * x0^2 + 6.20008e-10 * x0^3) * (-3.96863 * x3 + 6.61438 * x3^3)) + [0,0,0,0,0,0,0,0,0.000332604,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (-21.59 + 2.48511 * x1 - 0.0881978 * x1^2 + 0.000978555 * x1^3) * (-1.11803 + 3.3541 * x2^2)) + [-0.000271509,-0.000271509,-0.000271509,-0.000271509,-0.000271509,-0.000271509,-0.000271509,-0.000271509,0,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (-21.59 + 2.48511 * x1 - 0.0881978 * x1^2 + 0.000978555 * x1^3) * (-1.11803 + 3.3541 * x3^2)) + [0,0,0,0,0,0,0,0,0.00135063,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (6.21867 * x3 - 29.0205 * x3^3 + 26.1184 * x3^5)) + [0,0,0,0,0,0,0,0,-0.00236117,0,0,0,0,0,0,0,0,0,0,0]#20 * (63.4174 - 20.0089 * x1 + 2.24735 * x1^2 - 0.120561 * x1^3 + 0.00334188 * x1^4 - 4.61067e-05 * x1^5 + 2.50028e-07 * x1^6) + [0,0,0,0,0,0,0,0,0.00221572,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-50.2377 + 11.7408 * x1 - 0.969964 * x1^2 + 0.0365412 * x1^3 - 0.00063952 * x1^4 + 4.2109e-06 * x1^5) * (1.73205 * x2)) + [-0.00325289,-0.00325289,-0.00325289,-0.00325289,-0.00325289,-0.00325289,-0.00325289,-0.00325289,0,-0.00341084,-0.00341084,-0.00341084,-0.00341084,-0.00341084,-0.00341084,-0.00341084,-0.00341084,-0.00341084,-0.00341084,-0.00341084]#20 * ((-50.2377 + 11.7408 * x1 - 0.969964 * x1^2 + 0.0365412 * x1^3 - 0.00063952 * x1^4 + 4.2109e-06 * x1^5) * (1.73205 * x3)) + [0,0,0,0,0,0,0,0,-0.00363071,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-21.59 + 2.48511 * x1 - 0.0881978 * x1^2 + 0.000978555 * x1^3) * (-3.96863 * x2 + 6.61438 * x2^3)) + [0,0,0,0,0,0,0,0,0.000265954,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-3.35707 + 0.00734507 * x0 - 4.12446e-06 * x0^2 + 6.20008e-10 * x0^3) * (-4.00121 + 0.133369 * x1) * (1.73205 * x2) * (-1.11803 + 3.3541 * x3^2)) + [0,0,0,0,0,0,0,0,-0.00103441,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-3.35707 + 0.00734507 * x0 - 4.12446e-06 * x0^2 + 6.20008e-10 * x0^3) * (1.125 - 11.25 * x2^2 + 13.125 * x2^4)) + [0,0,0,0,0,0,0,0,0.00315489,0,0,0,0,0,0,0,0,0,0,0]#20 * ((2.66787 - 0.00391513 * x0 + 1.11808e-06 * x0^2) * (-4.00121 + 0.133369 * x1) * (-1.11803 + 3.3541 * x2^2) * (-1.11803 + 3.3541 * x3^2)) + [0,0,0,0,0,0,0,0,-0.00231383,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (-50.2377 + 11.7408 * x1 - 0.969964 * x1^2 + 0.0365412 * x1^3 - 0.00063952 * x1^4 + 4.2109e-06 * x1^5) * (1.73205 * x2)) + [0,0,0,0,0,0,0,0,-0.000275197,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (-4.00121 + 0.133369 * x1) * (1.125 - 11.25 * x2^2 + 13.125 * x2^4) * (1.73205 * x3)) + [0,0,0,0,0,0,0,0,-0.000330104,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (-4.00121 + 0.133369 * x1) * (6.21867 * x3 - 29.0205 * x3^3 + 26.1184 * x3^5)) + [0,0,0,0,0,0,0,0,0.000542696,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (-1.12673 + 23.6614 * x2^2 - 70.9843 * x2^4 + 52.0551 * x2^6)) + [0,0,0,0,0,0,0,0,0.000739843,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (1.73205 * x2) * (6.21867 * x3 - 29.0205 * x3^3 + 26.1184 * x3^5)) + [0,0,0,0,0,0,0,0,-0.000367056,0,0,0,0,0,0,0,0,0,0,0]#20 * ((-1.87569 + 0.00140172 * x0) * (-1.12673 + 23.6614 * x3^2 - 70.9843 * x3^4 + 52.0551 * x3^6)) + [0,0,0,0,0,0,0,0,0.00225843,0,0,0,0,0,0,0,0,0,0,0]#20 * ((1.73205 * x2) * (-1.12673 + 23.6614 * x3^2 - 70.9843 * x3^4 + 52.0551 * x3^6)))o(| y0 = [x0]->[x0]<br>
| y1 = [x1]->[x1]<br>
| y2 = [x2]->[-50+x2]<br>
| y3 = [x3]->[-55+x3]<br>
)</p>
|