1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
##################################################
Distribution GeneralizedExtremeValue(mu=2, sigma=1.5, xi=-0.15)
conversion as WeibullMax(beta = 10, alpha = 6.66667, gamma = 12)
Elliptical = False
Continuous = True
oneRealization= [2.00915]
Point= [1.0]
ddf = [0.108952]
log pdf= [-1.75315]
pdf = [0.173227]
cdf= [0.151408]
ccdf= [0.848592]
survival= [0.848592]
Inverse survival= [0.211041]
Survival(inverse survival)= [0.95]
pdf gradient = [-0.108952,-0.0428497,0.0749046]
cdf gradient = [-0.173227,0.115485,-0.0559084]
quantile= [5.59515]
return level=4.864873
cdf(quantile)= 0.95
entropy=1.896098
Minimum volume interval= [-0.359967, 5.97545]
threshold= 0.95
Minimum volume level set= {x | f(x) <= 3.31111} with f=
MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=-0.15))
beta= [0.0364758]
Bilateral confidence interval= [-0.162817, 6.23879]
beta= [0.95]
Unilateral confidence interval (lower tail)= [-4.83649, 5.59515]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.211041, 12]
beta= [0.95]
mean= [2.66959]
standard deviation= [1.64028]
skewness= [0.435743]
kurtosis= [3.13766]
covariance= [[ 2.69053 ]]
correlation= [[ 1 ]]
spearman= [[ 1 ]]
kendall= [[ 1 ]]
parameters= [[mu : 2, sigma : 1.5, xi : -0.15]]
Standard representative= WeibullMax(beta = 1, alpha = 6.66667, gamma = 0)
mu= 2.0
sigma= 1.5
xi= -0.15
Actual distribution= WeibullMax(beta = 10, alpha = 6.66667, gamma = 12)
Distribution from actual distribution= GeneralizedExtremeValue(mu=2, sigma=1.5, xi=-0.15)
##################################################
Distribution GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0)
conversion as Gumbel(beta = 1.5, gamma = 2)
Elliptical = False
Continuous = True
oneRealization= [3.01681]
Point= [1.0]
ddf = [0.116989]
log pdf= [-1.68653]
pdf = [0.18516]
cdf= [0.142597]
ccdf= [0.857403]
survival= [0.857403]
Inverse survival= [0.354217]
Survival(inverse survival)= [0.95]
pdf gradient = [-0.116989,-0.0454479,0.0844441]
cdf gradient = [-0.18516,0.12344,-0.0617202]
quantile= [6.45529]
return level=5.375551
cdf(quantile)= 0.95
entropy=1.982681
Minimum volume interval= [-0.341999, 6.74221]
threshold= 0.95
Minimum volume level set= {x | f(x) <= 3.6093} with f=
MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0))
beta= [0.0270708]
Bilateral confidence interval= [0.0420159, 7.51437]
beta= [0.95]
Unilateral confidence interval (lower tail)= [-3.20963, 6.45529]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.354217, 50.3543]
beta= [0.95]
mean= [2.86582]
standard deviation= [1.92382]
skewness= [1.13955]
kurtosis= [5.4]
covariance= [[ 3.7011 ]]
correlation= [[ 1 ]]
spearman= [[ 1 ]]
kendall= [[ 1 ]]
parameters= [[mu : 2, sigma : 1.5, xi : 0]]
Standard representative= Gumbel(beta = 1, gamma = 0)
mu= 2.0
sigma= 1.5
xi= 0.0
Actual distribution= Gumbel(beta = 1.5, gamma = 2)
Distribution from actual distribution= GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0)
##################################################
Distribution GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0.15)
conversion as Frechet(beta = 10, alpha = 6.66667, gamma = -8)
Elliptical = False
Continuous = True
oneRealization= [1.37703]
Point= [1.0]
ddf = [0.127801]
log pdf= [-1.6163]
pdf = [0.198632]
cdf= [0.132842]
ccdf= [0.867158]
survival= [0.867158]
Inverse survival= [0.482513]
Survival(inverse survival)= [0.95]
pdf gradient = [-0.127801,-0.0472207,0.095424]
cdf gradient = [-0.198632,0.132422,-0.0685353]
quantile= [7.61316]
return level=6.015168
cdf(quantile)= 0.95
entropy=2.069263
Minimum volume interval= [-0.261956, 7.81353]
threshold= 0.95
Minimum volume level set= {x | f(x) <= 3.47643e+56} with f=
MinimumVolumeLevelSetEvaluation(GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0.15))
beta= [0]
Bilateral confidence interval= [0.22178, 9.35746]
beta= [0.95]
Unilateral confidence interval (lower tail)= [-8, 7.61316]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.482513, 1251.08]
beta= [0.95]
mean= [3.12484]
standard deviation= [2.45836]
skewness= [2.53025]
kurtosis= [19.2742]
covariance= [[ 6.04353 ]]
correlation= [[ 1 ]]
spearman= [[ 1 ]]
kendall= [[ 1 ]]
parameters= [[mu : 2, sigma : 1.5, xi : 0.15]]
Standard representative= Frechet(beta = 1, alpha = 6.66667, gamma = 0)
mu= 2.0
sigma= 1.5
xi= 0.15
Actual distribution= Frechet(beta = 10, alpha = 6.66667, gamma = -8)
Distribution from actual distribution= GeneralizedExtremeValue(mu=2, sigma=1.5, xi=0.15)
|