File: t_Histogram_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (33 lines) | stat: -rw-r--r-- 2,249 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
Distribution  class=Histogram name=Histogram dimension=1 first=-1.5 width=class=Point name=Unnamed dimension=4 values=[1,0.7,1.2,0.9] height=class=Point name=Unnamed dimension=4 values=[0.0625,0.1875,0.4375,0.3125]
Distribution  Histogram(origin = -1.5, {w0 = 1, h0 = 0.0625}, {w1 = 0.7, h1 = 0.1875}, {w2 = 1.2, h2 = 0.4375}, {w3 = 0.9, h3 = 0.3125})
Distribution  class=Histogram name=Histogram dimension=1 first=-1.5 width=class=Point name=Unnamed dimension=4 values=[1,0.7,1.2,0.9] height=class=Point name=Unnamed dimension=4 values=[0.0625,0.1875,0.4375,0.3125]
Distribution  Histogram(origin = -1.5, {w0 = 1, h0 = 0.0625}, {w1 = 0.7, h1 = 0.1875}, {w2 = 1.2, h2 = 0.4375}, {w3 = 0.9, h3 = 0.3125})
Elliptical =  False
Continuous =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[1.19686]
Point=  class=Point name=Unnamed dimension=1 values=[1]
ddf     = class=Point name=Unnamed dimension=1 values=[0]
log pdf=-0.826679
pdf     =0.437500
cdf=0.543750
ccdf=0.456250
quantile= class=Point name=Unnamed dimension=1 values=[2.14]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-0.7]
Survival(inverseSurvival)=0.950000
entropy=1.154139
Minimum volume interval= [-0.7, 2.3]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 2.77259} with f=
MinimumVolumeLevelSetEvaluation(Histogram(origin = -1.5, {w0 = 1, h0 = 0.0625}, {w1 = 0.7, h1 = 0.1875}, {w2 = 1.2, h2 = 0.4375}, {w3 = 0.9, h3 = 0.3125}))
beta= [0.0625]
Bilateral confidence interval= [-1.1, 2.22]
beta= [0.95]
Unilateral confidence interval (lower tail)= [-1.5, 2.14]
beta= [0.95]
Unilateral confidence interval (upper tail)= [-0.7, 2.3]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[0.858125]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.720205]
parameters= [class=PointWithDescription name=X0 dimension=9 description=[first,width_0,height_0,width_1,height_1,width_2,height_2,width_3,height_3] values=[-1.5,1,0.0625,0.7,0.1875,1.2,0.4375,0.9,0.3125]]
Standard representative= Histogram(origin = -1, {w0 = 0.526316, h0 = 0.11875}, {w1 = 0.368421, h1 = 0.35625}, {w2 = 0.631579, h2 = 0.83125}, {w3 = 0.473684, h3 = 0.59375})