File: t_IndependentCopula_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (62 lines) | stat: -rw-r--r-- 2,823 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
Copula = class=IndependentCopula name=IndependentCopula dimension=3
Copula = IndependentCopula(dimension = 3)
Elliptical distribution =  False
Continuous copula =  True
Elliptical copula =  True
hasIndependentCopula =  True
oneRealization= class=Point name=Unnamed dimension=3 values=[0.629877,0.882805,0.135276]
Point=  class=Point name=Unnamed dimension=3 values=[0.6,0.6,0.6]
ddf     = class=Point name=Unnamed dimension=3 values=[0,0,0]
pdf     =1.000000
cdf=0.216000
pdf gradient     = class=Point name=Unnamed dimension=0 values=[]
cdf gradient     = class=Point name=Unnamed dimension=0 values=[]
quantile= class=Point name=Unnamed dimension=3 values=[0.983048,0.983048,0.983048]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=3 values=[0.0169524,0.0169524,0.0169524]
Survival(inverseSurvival)=0.950000
entropy=0.000000
Minimum volume interval= [0.00847621, 0.991524]
[0.00847621, 0.991524]
[0.00847621, 0.991524]
threshold= [0.983048]
Minimum volume level set= {x | f(x) <= 0.983048} with f=
[x0,x1,x2]->[2*max(abs(x0-0.5),abs(x1-0.5),abs(x2-0.5))]
beta= [0.983048]
Bilateral confidence interval= [0.00847621, 0.991524]
[0.00847621, 0.991524]
[0.00847621, 0.991524]
beta= [0.983048]
Unilateral confidence interval (lower tail)= [0, 0.983048]
[0, 0.983048]
[0, 0.983048]
beta= [0.983048]
Unilateral confidence interval (upper tail)= [0.0169524, 1]
[0.0169524, 1]
[0.0169524, 1]
beta= [0.983048]
mean= class=Point name=Unnamed dimension=3 values=[0.5,0.5,0.5]
covariance= class=CovarianceMatrix dimension=3 implementation=class=MatrixImplementation name=Unnamed rows=3 columns=3 values=[0.0833333,0,0,0,0.0833333,0,0,0,0.0833333]
parameters= [class=PointWithDescription name=X0 dimension=0 description=[] values=[]]
margin= class=IndependentCopula name=IndependentCopula dimension=1
margin PDF=1.000000
margin CDF=0.250000
margin quantile= class=Point name=Unnamed dimension=1 values=[0.95]
margin realization= class=Point name=Unnamed dimension=1 values=[0.0325028]
margin= class=IndependentCopula name=IndependentCopula dimension=1
margin PDF=1.000000
margin CDF=0.250000
margin quantile= class=Point name=Unnamed dimension=1 values=[0.95]
margin realization= class=Point name=Unnamed dimension=1 values=[0.347057]
margin= class=IndependentCopula name=IndependentCopula dimension=1
margin PDF=1.000000
margin CDF=0.250000
margin quantile= class=Point name=Unnamed dimension=1 values=[0.95]
margin realization= class=Point name=Unnamed dimension=1 values=[0.969423]
indices= [1, 0]
margins= class=IndependentCopula name=IndependentCopula dimension=2
margins PDF=1.000000
margins CDF=0.062500
margins quantile= class=Point name=Unnamed dimension=2 values=[0.974679,0.974679]
margins CDF(quantile)=0.950000
margins realization= class=Point name=Unnamed dimension=2 values=[0.92068,0.50304]