File: t_InverseWishart_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (22 lines) | stat: -rw-r--r-- 1,051 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Distribution  class=InverseWishart name=InverseWishart dimension=1 cholesky=class=TriangularMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1] nu=15 inverseCholeskyInverse=class=TriangularMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1]
Distribution  InverseWishart(V = 
[[ 1 ]], nu = 15)
entropy=-2.205542
Minimum volume interval= [0.0299545, 0.140394]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 47.5285} with f=
MinimumVolumeLevelSetEvaluation(InverseWishart(V = 
[[ 1 ]], nu = 15))
beta= [2.28365e-21]
Bilateral confidence interval= [0.036379, 0.15969]
beta= [0.95]
Unilateral confidence interval (lower tail)= [0, 0.137723]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.0400067, 59.8961]
beta= [0.95]
Run test_computeLogPDF... SUCCESS
Run test_computeLogPDF_1D_case... SUCCESS
Run test_computeLogPDF_diagonal_case... SUCCESS
Run test_getSample_getMean... SUCCESS
distribution InverseWishart(V = 
[[ 1 ]], nu = 15)