File: t_LHSExperiment_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (102 lines) | stat: -rw-r--r-- 5,382 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
experiment =  LHSExperiment(distribution=class=Normal name=Normal dimension=4 mean=class=Point name=Unnamed dimension=4 values=[0,0,0,0] sigma=class=Point name=Unnamed dimension=4 values=[1,1,1,1] correlationMatrix=class=CorrelationMatrix dimension=4 implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1], size10, always shuffle=false, random shift=true
sample =  class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=10 dimension=4 description=[X0,X1,X2,X3] data=[[-0.128245,0.376836,-1.22066,-1.10522],[1.10582,-0.338459,0.24791,-0.346101],[0.54296,-1.42346,0.839551,0.0208249],[-1.16265,0.0759283,-2.01943,1.09374],[0.145939,-1.05065,1.1245,0.752451],[-0.54266,0.796553,-0.152699,-0.0930679],[2.38039,1.23369,-0.479086,1.68956],[-0.466678,-0.566345,1.58492,0.34823],[-3.52623,-0.191816,-0.753697,-0.645958],[0.297406,2.83847,0.380733,-1.46889]]
weights =  class=Point name=Unnamed dimension=10 values=[0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1]
sample2 =      [ X0         X1         X2         X3         ]
0 : [ -0.010542   0.440747  -0.907702  -1.04424   ]
1 : [  0.917871  -0.318324   0.234117  -0.348873  ]
2 : [  0.706998  -1.47467    0.547381   0.0632927 ]
3 : [ -0.963304   0.089972  -1.72779    0.962638  ]
4 : [  0.201535  -1.00455    0.965576   0.831549  ]
5 : [ -0.668953   0.555671  -0.023116  -0.0627709 ]
6 : [  1.64612    1.04263   -0.276266   1.91121   ]
7 : [ -0.361935  -0.575544   1.89896    0.292035  ]
8 : [ -1.38907   -0.110551  -0.626966  -0.834518  ]
9 : [  0.44615    1.95064    0.328131  -1.36724   ]
sample  =      [ X0         X1         X2         X3         ]
0 : [ -1.0393     0.335691  -1.45686   -0.25094   ]
1 : [  1.06144    2.41939    0.626709  -0.314665  ]
2 : [  0.416873  -0.779287   1.53713   -0.813699  ]
3 : [  0.142019   0.929935   0.431971  -1.50779   ]
4 : [ -1.70296   -1.44323   -0.0367999  0.0604975 ]
5 : [  0.534882  -1.05605    0.205732   2.50647   ]
6 : [ -0.56838    0.111106  -0.731972   0.598258  ]
7 : [ -0.373196   0.526136   1.2056     0.974748  ]
8 : [ -0.0568821 -0.356297  -1.04449    0.468425  ]
9 : [  1.78081   -0.0663524 -0.357779  -1.04292   ]
sample2 =      [ X0         X1         X2         X3         ]
0 : [  0.765581  -0.641697  -0.15499    1.02033   ]
1 : [  0.0316325 -0.216958  -0.928132  -1.17524   ]
2 : [ -1.09931   -1.46787   -1.28836    0.208209  ]
3 : [ -0.446501   1.98151    0.97195    1.93178   ]
4 : [  1.10742    1.13989    0.178853  -0.225676  ]
5 : [  1.2938     0.540534  -0.403253  -1.31606   ]
6 : [ -0.63869   -0.441023   0.797084   0.579203  ]
7 : [  0.494526   0.171276   0.50552   -0.423837  ]
8 : [ -2.05943   -0.845955   1.89207   -0.661324  ]
9 : [ -0.160979   0.496285  -0.561349   0.337265  ]
sample  =      [ X0        X1        X2        X3        ]
0 : [ -0.38532  -1.64485   0.67449   0.38532  ]
1 : [  0.67449  -1.03643   0.125661  1.64485  ]
2 : [  1.64485  -0.67449   1.64485  -0.67449  ]
3 : [  0.38532   1.64485  -0.125661 -1.64485  ]
4 : [ -1.03643   1.03643  -1.64485  -1.03643  ]
5 : [  1.03643   0.67449   0.38532   1.03643  ]
6 : [ -0.125661 -0.38532  -1.03643  -0.38532  ]
7 : [ -0.67449   0.125661  1.03643   0.125661 ]
8 : [  0.125661 -0.125661 -0.38532   0.67449  ]
9 : [ -1.64485   0.38532  -0.67449  -0.125661 ]
sample2 =      [ X0        X1        X2        X3        ]
0 : [ -0.38532  -1.64485   0.67449   0.38532  ]
1 : [  0.67449  -1.03643   0.125661  1.64485  ]
2 : [  1.64485  -0.67449   1.64485  -0.67449  ]
3 : [  0.38532   1.64485  -0.125661 -1.64485  ]
4 : [ -1.03643   1.03643  -1.64485  -1.03643  ]
5 : [  1.03643   0.67449   0.38532   1.03643  ]
6 : [ -0.125661 -0.38532  -1.03643  -0.38532  ]
7 : [ -0.67449   0.125661  1.03643   0.125661 ]
8 : [  0.125661 -0.125661 -0.38532   0.67449  ]
9 : [ -1.64485   0.38532  -0.67449  -0.125661 ]
sample  =      [ X0        X1        X2        X3        ]
0 : [ -1.03643  -1.03643   1.03643   0.67449  ]
1 : [ -1.64485  -0.38532   0.125661  1.03643  ]
2 : [ -0.38532  -0.67449  -1.03643   0.38532  ]
3 : [ -0.125661  0.67449   0.67449   0.125661 ]
4 : [  0.67449  -1.64485  -0.125661 -1.64485  ]
5 : [  0.125661  1.03643   1.64485  -1.03643  ]
6 : [ -0.67449   0.38532   0.38532  -0.38532  ]
7 : [  1.64485  -0.125661 -0.38532  -0.125661 ]
8 : [  0.38532   1.64485  -1.64485  -0.67449  ]
9 : [  1.03643   0.125661 -0.67449   1.64485  ]
sample2 =      [ X0        X1        X2        X3        ]
0 : [  0.38532   0.38532  -1.03643  -0.38532  ]
1 : [ -0.125661  0.67449   0.125661 -1.64485  ]
2 : [  0.67449  -0.125661  1.64485   1.03643  ]
3 : [ -1.64485   1.64485   1.03643   1.64485  ]
4 : [ -0.38532  -0.67449  -0.125661 -1.03643  ]
5 : [  1.03643  -1.03643  -1.64485   0.67449  ]
6 : [  0.125661 -0.38532   0.38532  -0.67449  ]
7 : [  1.64485   0.125661  0.67449  -0.125661 ]
8 : [ -1.03643   1.03643  -0.67449   0.38532  ]
9 : [ -0.67449  -1.64485  -0.38532   0.125661 ]
sample  =      [ X0         ]
0 : [  0.037815  ]
1 : [ -0.0665638 ]
2 : [  0.736248  ]
3 : [ -0.398497  ]
4 : [  0.839959  ]
5 : [  0.371165  ]
6 : [ -0.70109   ]
7 : [  0.430737  ]
8 : [ -0.544098  ]
9 : [ -0.999779  ]
sample2 =      [ X0         ]
0 : [  0.0590926 ]
1 : [ -0.110185  ]
2 : [  0.784497  ]
3 : [ -0.279307  ]
4 : [  0.99518   ]
5 : [  0.201021  ]
6 : [ -0.776429  ]
7 : [  0.529796  ]
8 : [ -0.553419  ]
9 : [ -0.95486   ]