File: t_Laplace_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (37 lines) | stat: -rw-r--r-- 1,803 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Distribution  class=Laplace name=Laplace dimension=1 mu=0.5 lambda=1.5
Distribution  Laplace(mu = 0.5, lambda = 1.5)
Elliptical =  True
Continuous =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[0.700514]
Point=  class=Point name=Unnamed dimension=1 values=[1]
ddf     = class=Point name=Unnamed dimension=1 values=[-0.531412]
pdf     = 0.3542749146
cdf= 0.763816723629
characteristic function= (0.607557158232+0.331909988264j)
pdf gradient     = class=Point name=Unnamed dimension=2 values=[0.531412,0.0590458]
cdf gradient     = class=Point name=Unnamed dimension=2 values=[-0.354275,0.118092]
quantile= class=Point name=Unnamed dimension=1 values=[2.03506]
cdf(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-1.03506]
Survival(inverseSurvival)=0.950000
entropy=1.287682
Minimum volume interval= [-1.49715, 2.49715]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 3.28341} with f=
MinimumVolumeLevelSetEvaluation(Laplace(mu = 0.5, lambda = 1.5))
beta= [0.0375]
Bilateral confidence interval= [-1.49715, 2.49715]
beta= [0.95]
Unilateral confidence interval (lower tail)= [-20.5292, 2.03506]
beta= [0.95]
Unilateral confidence interval (upper tail)= [-1.03506, 21.5292]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[0.5]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.888889]
parameters= [class=PointWithDescription name=X0 dimension=2 description=[mu,lambda] values=[0.5,1.5]]
Standard representative= Laplace(mu = 0, lambda = 1)
lambda= 1.5
mu= 0.5
standard deviation= class=Point name=Unnamed dimension=1 values=[0.942809]
skewness= class=Point name=Unnamed dimension=1 values=[0]
kurtosis= class=Point name=Unnamed dimension=1 values=[6]