1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
#!/usr/bin/env python
import openturns as ot
import openturns.experimental as otexp
import openturns.testing as ott
from openturns.usecases import cantilever_beam
from openturns.usecases import stressed_beam
import math
# stressed_beam ##############################################
print(f"-- stressed_beam {'-' * 50}")
threshold = -1e6
sm = stressed_beam.AxialStressedBeam()
limitStateFunction = sm.model
R_dist = sm.distribution_R
F_dist = sm.distribution_F
distribution = sm.distribution
inputRandomVector = ot.RandomVector(distribution)
outputRandomVector = ot.CompositeRandomVector(limitStateFunction, inputRandomVector)
event = ot.ThresholdEvent(outputRandomVector, ot.Less(), threshold)
D = 0.02
G = R_dist - F_dist / (D**2 / 4 * math.pi)
pf_ref = G.computeCDF(threshold)
print(f"exact probability={pf_ref}")
# FORM analysis
optimAlgo = ot.Cobyla()
optimAlgo.setStartingPoint(distribution.getMean())
algoFORM = ot.FORM(optimAlgo, event)
algoFORM.run()
resultFORM = algoFORM.getResult()
alpha = resultFORM.getStandardSpaceDesignPoint()
print(f"alpha={alpha}")
# LineSampling
ot.RandomGenerator.SetSeed(0)
solver = ot.Brent(1e-3, 1e-3, 1e-3, 5)
rootStrategy = ot.MediumSafe(solver)
algo = otexp.LineSampling(event, alpha, rootStrategy)
algo.setMaximumCoefficientOfVariation(1e-3)
algo.setMaximumOuterSampling(1000)
algo.setStoreHistory(True)
algo.run()
result = algo.getResult()
print(str(algo)[:100])
print(result)
ott.assert_almost_equal(result.getProbabilityEstimate(), pf_ref)
assert algo.getStoreHistory()
assert len(algo.getAlphaHistory()) == algo.getMaximumOuterSampling(), "empty alphas"
assert len(algo.getRootValuesHistory()) > 0, "empty roots"
assert len(algo.getRootPointsHistory()) > 0, "empty roots"
assert algo.getAdaptiveImportantDirection(), "adaptive?"
assert algo.getSearchOppositeDirection(), "opposite?"
assert algo.getInitialAlpha() == alpha, "alpha?"
rootStrategy2 = algo.getRootStrategy()
algo.setRootStrategy(rootStrategy2)
# cantilever_beam ##############################################
print(f"-- cantilever_beam {'-' * 50}")
# model
cb = cantilever_beam.CantileverBeam()
distribution = cb.distribution
model = cb.model
vect = ot.RandomVector(distribution)
G = ot.CompositeRandomVector(model, vect)
event = ot.ThresholdEvent(G, ot.Greater(), 0.30)
# FORM for alpha
optimAlgo = ot.AbdoRackwitz()
optimAlgo.setStartingPoint(distribution.getMean())
optimAlgo.setMaximumCallsNumber(1000)
optimAlgo.setMaximumAbsoluteError(1.0e-10)
optimAlgo.setMaximumRelativeError(1.0e-10)
optimAlgo.setMaximumResidualError(1.0e-10)
optimAlgo.setMaximumConstraintError(1.0e-10)
algo = ot.FORM(optimAlgo, event)
algo.run()
result = algo.getResult()
alpha = result.getStandardSpaceDesignPoint()
print(f"alpha={alpha}")
# LineSampling
ot.RandomGenerator.SetSeed(0)
solver = ot.Brent(1e-3, 1e-3, 1e-3, 5)
rootStrategy = ot.MediumSafe(solver)
algo = otexp.LineSampling(event, alpha, rootStrategy)
algo.setMaximumOuterSampling(1000)
algo.setMaximumCoefficientOfVariation(5e-2)
algo.run()
result = algo.getResult()
print(result)
ott.assert_almost_equal(result.getProbabilityEstimate(), 4.57807e-07)
# two branch model ##############################################
print(f"-- 2 branch {'-' * 50}")
X = ot.RandomVector(ot.Normal(2))
g_twoBranch = ot.SymbolicFunction(
["x1", "x2"],
[
"min(5 + 0.1 * (x1 - x2)^2 - (x1 + x2) / sqrt(2), 5 + 0.1 * (x1 - x2)^2 + (x1 + x2) / sqrt(2))"
],
)
Y_twoBranch = ot.CompositeRandomVector(g_twoBranch, X)
threshold = 1.5
event_twoBranch = ot.ThresholdEvent(Y_twoBranch, ot.Less(), threshold)
g1 = ot.SymbolicFunction(["x1", "x2"], ["5 + 0.1 * (x1 - x2)^2 - (x1 + x2) / sqrt(2)"])
Y1 = ot.CompositeRandomVector(g1, X)
event1 = ot.ThresholdEvent(Y1, ot.Less(), threshold)
g2 = ot.SymbolicFunction(["x1", "x2"], ["5 + 0.1 * (x1 - x2)^2 + (x1 + x2) / sqrt(2)"])
Y2 = ot.CompositeRandomVector(g2, X)
event2 = ot.ThresholdEvent(Y2, ot.Less(), threshold)
unionEvent = ot.UnionEvent([event1, event2])
optimAlgo = ot.Cobyla()
optimAlgo.setStartingPoint(X.getMean())
algo = ot.FORM(optimAlgo, event_twoBranch)
algo.run()
result = algo.getResult()
alpha_twoBranch = result.getStandardSpaceDesignPoint()
# LineSampling / only one branch
ot.RandomGenerator.SetSeed(0)
solver = ot.Brent(1e-3, 1e-3, 1e-3, 5)
rootStrategy = ot.MediumSafe(solver)
algo = otexp.LineSampling(event_twoBranch, alpha_twoBranch, rootStrategy)
algo.setSearchOppositeDirection(False)
algo.setMaximumOuterSampling(1000)
algo.setMaximumCoefficientOfVariation(5e-2)
algo.run()
result = algo.getResult()
print(result)
ott.assert_almost_equal(result.getProbabilityEstimate(), 1.5e-4, 0.0, 1e-5)
# LineSampling
ot.RandomGenerator.SetSeed(0)
algo.setSearchOppositeDirection(True)
algo.setMaximumOuterSampling(1000)
algo.run()
result = algo.getResult()
print(result)
ott.assert_almost_equal(result.getProbabilityEstimate(), 3e-4, 0.0, 1e-5)
# LineSampling / system event / no adaptive alpha
algo = otexp.LineSampling(unionEvent, alpha_twoBranch, rootStrategy)
ot.RandomGenerator.SetSeed(0)
algo.setMaximumOuterSampling(1000)
algo.setAdaptiveImportantDirection(False)
algo.run()
result = algo.getResult()
print(result)
ott.assert_almost_equal(result.getProbabilityEstimate(), 3e-4, 0.0, 1e-5)
ot.ResourceMap.SetAsBool("LineSampling-DefaultAdaptiveImportantDirection", True)
# rosenbrock ##############################################
print(f"-- rosenbrock {'-' * 50}")
g = ot.SymbolicFunction(["x1", "x2"], ["100 * (x2 - x1^2)^2 + (x1 - 1)^2"])
X = ot.RandomVector(ot.Normal(2))
Y = ot.CompositeRandomVector(g, X)
threshold = 0.1
event = ot.ThresholdEvent(Y, ot.Less(), threshold)
###################################################
# FORM for alpha
optimAlgo = ot.Cobyla()
optimAlgo.setStartingPoint(X.getMean())
algo = ot.FORM(optimAlgo, event)
algo.run()
result = algo.getResult()
alpha = result.getStandardSpaceDesignPoint()
# LineSampling
rootStrategy = ot.SafeAndSlow(ot.Brent(1e-3, 1e-3, 1e-3, 5), 3, 0.1)
ot.RandomGenerator.SetSeed(0)
algo = otexp.LineSampling(event, alpha, rootStrategy)
algo.setMaximumOuterSampling(3000)
algo.setMaximumCoefficientOfVariation(5e-2)
algo.run()
result = algo.getResult()
print(result)
ott.assert_almost_equal(result.getProbabilityEstimate(), 0.00110258, 0.0, 1e-4)
# complementary
event = ot.ThresholdEvent(Y, ot.Greater(), threshold)
ot.RandomGenerator.SetSeed(0)
algo = otexp.LineSampling(event, alpha, rootStrategy)
algo.setMaximumOuterSampling(3000)
algo.setMaximumCoefficientOfVariation(5e-2)
algo.run()
result = algo.getResult()
print(result)
ott.assert_almost_equal(result.getProbabilityEstimate(), 0.997749, 0.0, 1e-4)
# complementary + opposite
ot.RandomGenerator.SetSeed(0)
algo = otexp.LineSampling(event, alpha, rootStrategy)
algo.setMaximumOuterSampling(3000)
algo.setMaximumCoefficientOfVariation(5e-2)
algo.setSearchOppositeDirection(True)
algo.run()
result = algo.getResult()
print(result)
ott.assert_almost_equal(result.getProbabilityEstimate(), 0.997749, 0.0, 1e-4)
# paraboloid ##############################################
print(f"-- paraboloid {'-' * 50}")
# model
paraboloid = ot.SymbolicFunction(
["u1", "u2", "u3", "u4", "u5"], ["- u5 + u1^2 + u2^2 + u3^2 + u4^2"]
)
b = 3.5
db = 0.02
t = 0.0
dim = 5
U = ot.Normal(dim)
X = ot.RandomVector(U)
Y = ot.CompositeRandomVector(paraboloid, X)
E1 = ot.ThresholdEvent(Y, ot.Less(), -b)
E2 = ot.ThresholdEvent(Y, ot.Less(), -(b + db))
E3 = ot.ThresholdEvent(Y, ot.Greater(), -(b + db))
E4 = ot.IntersectionEvent([E1, E3])
# LineSampling, with step < db to find the roots
alpha = [0.0, 0.0, 0.0, 0.0, 1.0]
rootStrategy = ot.SafeAndSlow(ot.Brent(1e-3, 1e-3, 1e-3, 5), 8, 0.01)
ot.RandomGenerator.SetSeed(0)
algo = otexp.LineSampling(E4, alpha, rootStrategy)
algo.setMaximumOuterSampling(2000)
algo.setMaximumCoefficientOfVariation(5e-2)
algo.run()
result = algo.getResult()
print(result)
ott.assert_almost_equal(result.getProbabilityEstimate(), 2.103779e-07)
|