File: t_Logistic_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (37 lines) | stat: -rw-r--r-- 1,811 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Distribution  class=Logistic name=Logistic dimension=1 mu=-0.5 beta=1.5
Distribution  Logistic(mu = -0.5, beta = 1.5)
Elliptical =  True
Continuous =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[0.297531]
Point=  class=Point name=Unnamed dimension=1 values=[1]
ddf     = class=Point name=Unnamed dimension=1 values=[-0.0403812]
log pdf=-2.031988
pdf     =0.131075
cdf=0.731059
ccdf=0.268941
characteristic function= (0.0743069833187-0.0405940899998j)
pdf gradient     = class=Point name=Unnamed dimension=2 values=[0.0403812,-0.0470019]
cdf gradient     = class=Point name=Unnamed dimension=2 values=[-0.131075,-0.131075]
quantile= class=Point name=Unnamed dimension=1 values=[3.91666]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-4.91666]
Survival(inverseSurvival)=0.950000
entropy=2.405465
Minimum volume interval= [-5.99534, 4.99534]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 4.11966} with f=
MinimumVolumeLevelSetEvaluation(Logistic(mu = -0.5, beta = 1.5))
beta= [0.01625]
Bilateral confidence interval= [-5.99534, 4.99534]
beta= [0.95]
Unilateral confidence interval (lower tail)= [-48.8543, 3.91666]
beta= [0.95]
Unilateral confidence interval (upper tail)= [-4.91666, 47.8543]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[-0.5]
standard deviation= class=Point name=Unnamed dimension=1 values=[2.7207]
skewness= class=Point name=Unnamed dimension=1 values=[0]
kurtosis= class=Point name=Unnamed dimension=1 values=[4.2]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[7.4022]
parameters= [class=PointWithDescription name=X0 dimension=2 description=[mu,beta] values=[-0.5,1.5]]
Standard representative= Logistic(mu = 0, beta = 1)