1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
experiment = LowDiscrepancyExperiment(sequence=class=LowDiscrepancySequence implementation=class=HaltonSequence base=[2,3,5,7] seed=1 permutations=[[0,1],[0,1,2],[0,1,2,3,4],[0,1,2,3,4,5,6]] scrambling=NONE, distribution=class=Normal name=Normal dimension=4 mean=class=Point name=Unnamed dimension=4 values=[5,5,5,5] sigma=class=Point name=Unnamed dimension=4 values=[1,1,1,1] correlationMatrix=class=CorrelationMatrix dimension=4 implementation=class=MatrixImplementation name=Unnamed rows=4 columns=4 values=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1], size16, restart=true, randomize=false
sample = [ y0 y1 y2 y3 ]
0 : [ 5 4.56927 4.15838 3.93243 ]
1 : [ 4.32551 5.43073 4.74665 4.43405 ]
2 : [ 5.67449 3.77936 5.25335 4.81999 ]
3 : [ 3.84965 4.86029 5.84162 5.18001 ]
4 : [ 5.31864 5.76471 3.24931 5.56595 ]
5 : [ 4.68136 4.23529 4.2937 6.06757 ]
6 : [ 6.15035 5.13971 4.84903 2.95461 ]
7 : [ 3.46588 6.22064 5.35846 4.01887 ]
8 : [ 5.15731 3.21384 5.99446 4.49313 ]
9 : [ 4.51122 4.66913 3.59493 4.87176 ]
10 : [ 5.88715 5.53508 4.41716 5.23227 ]
11 : [ 4.11285 3.95559 4.94985 5.62707 ]
12 : [ 5.48878 4.95356 5.4677 6.16283 ]
13 : [ 4.84269 5.89578 6.17499 3.25871 ]
14 : [ 6.53412 4.35437 3.82501 4.09855 ]
15 : [ 3.13727 5.23422 4.5323 4.55049 ]
weights = [0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625,0.0625]#16
sample2 = [ y0 y1 y2 y3 ]
0 : [ 5.07841 6.4461 5.05015 4.92319 ]
1 : [ 4.42087 3.5539 5.58284 5.28517 ]
2 : [ 5.77642 4.76578 6.40507 5.69063 ]
3 : [ 3.99001 5.64563 4.00554 6.27001 ]
4 : [ 5.40225 4.10422 4.64154 3.45542 ]
5 : [ 4.7628 5.04644 5.15097 4.17287 ]
6 : [ 6.31801 6.04441 5.7063 4.6064 ]
7 : [ 3.68199 4.46492 6.75069 4.97442 ]
8 : [ 5.2372 5.33087 2.59108 5.33889 ]
9 : [ 4.59775 6.78616 4.18662 5.75712 ]
10 : [ 6.00999 2.7538 4.76731 6.39417 ]
11 : [ 4.22358 4.60299 5.27411 3.60583 ]
12 : [ 5.57913 5.46494 5.87055 4.24288 ]
13 : [ 4.92159 3.84212 3.33544 4.66111 ]
14 : [ 6.86273 4.89148 4.3192 5.02558 ]
15 : [ 2.84613 5.80685 4.86928 5.3936 ]
sample3 = [ y0 y1 y2 y3 ]
0 : [ 5 4.56927 4.15838 3.93243 ]
1 : [ 4.32551 5.43073 4.74665 4.43405 ]
2 : [ 5.67449 3.77936 5.25335 4.81999 ]
3 : [ 3.84965 4.86029 5.84162 5.18001 ]
4 : [ 5.31864 5.76471 3.24931 5.56595 ]
5 : [ 4.68136 4.23529 4.2937 6.06757 ]
6 : [ 6.15035 5.13971 4.84903 2.95461 ]
7 : [ 3.46588 6.22064 5.35846 4.01887 ]
8 : [ 5.15731 3.21384 5.99446 4.49313 ]
9 : [ 4.51122 4.66913 3.59493 4.87176 ]
10 : [ 5.88715 5.53508 4.41716 5.23227 ]
11 : [ 4.11285 3.95559 4.94985 5.62707 ]
12 : [ 5.48878 4.95356 5.4677 6.16283 ]
13 : [ 4.84269 5.89578 6.17499 3.25871 ]
14 : [ 6.53412 4.35437 3.82501 4.09855 ]
15 : [ 3.13727 5.23422 4.5323 4.55049 ]
sample = [ y0 y1 y2 y3 ]
0 : [ 5 4.56927 4.15838 3.93243 ]
1 : [ 4.32551 5.43073 4.74665 4.43405 ]
2 : [ 5.67449 3.77936 5.25335 4.81999 ]
3 : [ 3.84965 4.86029 5.84162 5.18001 ]
4 : [ 5.31864 5.76471 3.24931 5.56595 ]
5 : [ 4.68136 4.23529 4.2937 6.06757 ]
6 : [ 6.15035 5.13971 4.84903 2.95461 ]
7 : [ 3.46588 6.22064 5.35846 4.01887 ]
8 : [ 5.15731 3.21384 5.99446 4.49313 ]
9 : [ 4.51122 4.66913 3.59493 4.87176 ]
10 : [ 5.88715 5.53508 4.41716 5.23227 ]
11 : [ 4.11285 3.95559 4.94985 5.62707 ]
12 : [ 5.48878 4.95356 5.4677 6.16283 ]
13 : [ 4.84269 5.89578 6.17499 3.25871 ]
14 : [ 6.53412 4.35437 3.82501 4.09855 ]
15 : [ 3.13727 5.23422 4.5323 4.55049 ]
sample2 = [ y0 y1 y2 y3 ]
0 : [ 5.07841 6.4461 5.05015 4.92319 ]
1 : [ 4.42087 3.5539 5.58284 5.28517 ]
2 : [ 5.77642 4.76578 6.40507 5.69063 ]
3 : [ 3.99001 5.64563 4.00554 6.27001 ]
4 : [ 5.40225 4.10422 4.64154 3.45542 ]
5 : [ 4.7628 5.04644 5.15097 4.17287 ]
6 : [ 6.31801 6.04441 5.7063 4.6064 ]
7 : [ 3.68199 4.46492 6.75069 4.97442 ]
8 : [ 5.2372 5.33087 2.59108 5.33889 ]
9 : [ 4.59775 6.78616 4.18662 5.75712 ]
10 : [ 6.00999 2.7538 4.76731 6.39417 ]
11 : [ 4.22358 4.60299 5.27411 3.60583 ]
12 : [ 5.57913 5.46494 5.87055 4.24288 ]
13 : [ 4.92159 3.84212 3.33544 4.66111 ]
14 : [ 6.86273 4.89148 4.3192 5.02558 ]
15 : [ 2.84613 5.80685 4.86928 5.3936 ]
sample3 = [ y0 y1 y2 y3 ]
0 : [ 5.03918 4.27611 5.37993 5.82713 ]
1 : [ 4.3739 5.17103 6.02789 6.54458 ]
2 : [ 5.72451 6.28862 3.64683 3.72999 ]
3 : [ 3.92248 3.34913 4.44076 4.30937 ]
4 : [ 5.36013 4.70164 4.96992 4.71483 ]
5 : [ 4.72231 5.57115 5.49019 5.07681 ]
6 : [ 6.22986 4.00757 6.21596 5.44951 ]
7 : [ 3.5822 4.98453 3.8641 5.90145 ]
8 : [ 5.1971 5.943 4.55456 6.74129 ]
9 : [ 4.5549 4.39203 5.07024 3.83717 ]
10 : [ 5.94678 5.26615 5.60678 4.37293 ]
11 : [ 4.16949 6.54043 6.46106 4.76773 ]
12 : [ 5.53341 3.63686 4.0379 5.12824 ]
13 : [ 4.88223 4.79747 4.66284 5.50687 ]
14 : [ 6.67594 5.68423 5.17128 5.98113 ]
15 : [ 3.32406 4.14953 5.73228 7.04539 ]
sample = [ y0 ]
0 : [ 0 ]
1 : [ -0.67449 ]
2 : [ 0.67449 ]
3 : [ -1.15035 ]
4 : [ 0.318639 ]
5 : [ -0.318639 ]
6 : [ 1.15035 ]
7 : [ -1.53412 ]
8 : [ 0.157311 ]
9 : [ -0.488776 ]
10 : [ 0.887147 ]
11 : [ -0.887147 ]
12 : [ 0.488776 ]
13 : [ -0.157311 ]
14 : [ 1.53412 ]
15 : [ -1.86273 ]
sample = [ X0 X1 ]
0 : [ 0.5 0.333333 ]
1 : [ 0.25 0.666667 ]
2 : [ 0.75 0.111111 ]
3 : [ 0.125 0.444444 ]
4 : [ 0.625 0.777778 ]
5 : [ 0.375 0.222222 ]
6 : [ 0.875 0.555556 ]
7 : [ 0.0625 0.888889 ]
8 : [ 0.5625 0.037037 ]
9 : [ 0.3125 0.37037 ]
10 : [ 0.8125 0.703704 ]
11 : [ 0.1875 0.148148 ]
12 : [ 0.6875 0.481481 ]
13 : [ 0.4375 0.814815 ]
14 : [ 0.9375 0.259259 ]
15 : [ 0.03125 0.592593 ]
sample = [ y0 y1 y2 y3 ]
0 : [ 5 4.62698 4.06414 3.64063 ]
1 : [ 4.32551 5.03578 5.04182 4.39744 ]
2 : [ 5.67449 4.28014 4.50212 5.01283 ]
3 : [ 3.84965 4.30383 5.60652 5.6577 ]
4 : [ 5.31864 5.82158 4.01208 4.37535 ]
5 : [ 4.68136 4.17842 3.9818 5.41147 ]
6 : [ 6.15035 5.69617 4.9574 3.29053 ]
7 : [ 3.46588 5.29005 5.99742 4.44386 ]
8 : [ 5.15731 3.5318 4.78073 5.20826 ]
9 : [ 4.51122 4.46907 3.66173 4.03819 ]
10 : [ 5.88715 5.90697 4.83304 4.82671 ]
11 : [ 4.11285 3.65194 4.35606 5.46503 ]
12 : [ 5.48878 5.20417 5.35506 6.2057 ]
13 : [ 4.84269 5.69711 6.47655 4.34292 ]
14 : [ 6.53412 5.20793 3.66787 3.56781 ]
15 : [ 3.13727 4.27147 4.75335 4.35822 ]
|