File: t_MaximumDistribution_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (78 lines) | stat: -rw-r--r-- 3,317 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
Distribution  MaximumDistribution(Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
 [ 0 1 0 0 0 ]
 [ 0 0 1 0 0 ]
 [ 0 0 0 1 0 ]
 [ 0 0 0 0 1 ]]))
Elliptical =  False
Continuous =  True
threshold= 0.95
Minimum volume level set= {x | f(x) <= 2.46478} with f=
MinimumVolumeLevelSetEvaluation(MaximumDistribution(Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
 [ 0 1 0 0 0 ]
 [ 0 0 1 0 0 ]
 [ 0 0 0 1 0 ]
 [ 0 0 0 0 1 ]])))
beta=0.085027
Bilateral confidence interval= [-0.0547313, 2.57233]
beta=0.95
beta=0.95
beta=0.95
spearman= [[ 1 ]]
kendall= [[ 1 ]]
Standard representative= MaximumDistribution(Normal(mu = [0,0,0,0,0], sigma = [1,1,1,1,1], R = 5x5
[[ 1 0 0 0 0 ]
 [ 0 1 0 0 0 ]
 [ 0 0 1 0 0 ]
 [ 0 0 0 1 0 ]
 [ 0 0 0 0 1 ]]))
Distribution  MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))
Elliptical =  False
Continuous =  True
threshold= 0.95
Minimum volume level set= {x | f(x) <= 2.46478} with f=
MinimumVolumeLevelSetEvaluation(MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5))))
beta=0.085027
Bilateral confidence interval= [-0.0547313, 2.57233]
beta=0.95
beta=0.95
beta=0.95
spearman= [[ 1 ]]
kendall= [[ 1 ]]
Standard representative= MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))
Distribution  MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))
Elliptical =  False
Continuous =  True
threshold= 0.95
Minimum volume level set= {x | f(x) <= 2.46478} with f=
MinimumVolumeLevelSetEvaluation(MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5))))
beta=0.085027
Bilateral confidence interval= [-0.0547313, 2.57233]
beta=0.95
beta=0.95
beta=0.95
spearman= [[ 1 ]]
kendall= [[ 1 ]]
Standard representative= MaximumDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 5)))
Distribution  MaximumDistribution(Normal(mu = [0,0,0], sigma = [1,1,1], R = [[ 1   0.5 0   ]
 [ 0.5 1   0   ]
 [ 0   0   1   ]]))
Elliptical =  False
Continuous =  True
threshold= 0.95
Minimum volume level set= {x | f(x) <= 2.62114} with f=
MinimumVolumeLevelSetEvaluation(MaximumDistribution(Normal(mu = [0,0,0], sigma = [1,1,1], R = [[ 1   0.5 0   ]
 [ 0.5 1   0   ]
 [ 0   0   1   ]])))
beta=0.07272
Bilateral confidence interval= [-0.732826, 2.3765]
beta=0.95
beta=0.95
beta=0.95
spearman= [[ 1 ]]
kendall= [[ 1 ]]
Standard representative= MaximumDistribution(Normal(mu = [0,0,0], sigma = [1,1,1], R = [[ 1   0.5 0   ]
 [ 0.5 1   0   ]
 [ 0   0   1   ]]))
0.21785