1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
|
Distribution class=NormalGamma name=NormalGamma mu=1 kappa=2 alpha=3 beta=4
Distribution NormalGamma(mu=1, kappa=2, alpha=3, beta=4)
Elliptical = False
Continuous = True
oneRealization= [0.947065,0.52143]
Point= [1.5, 1.5]
ddf = [-0.218956,-0.127136]
log pdf=-2.467966
pdf=0.084757
cdf=0.198227
ccdf=0.801773
survival=0.010593
Inverse survival= [0.160511,-0.941338]
Survival(inverse survival)=0.950000
pdf gradient = [0.127136,0.00529732,0.0736518,-0.0635678]
cdf gradient = [-0.349393,0.0436741,0.0135182,-0.00130662]
quantile= [2.55849,4.59228]
cdf(quantile)=0.997715
entropy=1.765404
threshold=0.986085
Minimum volume level set= {x | f(x) <= 3.68948} with f=
MinimumVolumeLevelSetEvaluation(NormalGamma(mu=1, kappa=2, alpha=3, beta=4))
beta=0.024985
Bilateral confidence interval= [0.0966867, 2.20341]
[-1.77733, 3.77733]
beta=0.985531
Unilateral confidence interval (lower tail)= [0, 2.55849]
[-315.222, 4.59228]
beta=0.997715
Unilateral confidence interval (upper tail)= [0.160511, 9.72932]
[-0.941338, 317.222]
beta=0.972528
mean= [1,0.75]
standard deviation= [0.5,1.03078]
skewness= [1.1547,0]
kurtosis= [5,6]
covariance= [[ 0.1875 0 ]
[ 0 1 ]]
correlation= [[ 1 0 ]
[ 0 1 ]]
parameters= [[mu : 1, kappa : 2, alpha : 3, beta : 4]]
Standard representative= NormalGamma(mu=1, kappa=2, alpha=3, beta=4)
|