File: t_Pareto_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (35 lines) | stat: -rw-r--r-- 1,812 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Distribution  class=Pareto name=Pareto dimension=1 beta=7.5 alpha=5 gamma=-7
Distribution  Pareto(beta = 7.5, alpha=5, gamma=-7)
Elliptical =  False
Continuous =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[2.14939]
Point=  class=Point name=Unnamed dimension=1 values=[1]
range=  [0.5, (10126.8) +inf[
ddf     = class=Point name=Unnamed dimension=1 values=[-0.339467]
pdf     = 0.452622771263
cdf= 0.275803565979
pdf gradient     = class=Point name=Unnamed dimension=3 values=[0.301749,0.0613129,0.339467]
cdf gradient     = class=Point name=Unnamed dimension=3 values=[-0.482798,0.0467386,-0.452623]
quantile= class=Point name=Unnamed dimension=1 values=[6.65423]
cdf(quantile)= 0.95
InverseSurvival= class=Point name=Unnamed dimension=1 values=[0.577336]
Survival(inverseSurvival)=0.950000
entropy=1.605465
Minimum volume interval= [0.5, 6.65423]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 4.00034} with f=
MinimumVolumeLevelSetEvaluation(Pareto(beta = 7.5, alpha=5, gamma=-7))
beta= [0.0183093]
Bilateral confidence interval= [0.538073, 8.68459]
beta= [0.95]
Unilateral confidence interval (lower tail)= [0.5, 6.65423]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.577336, 10126.8]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[2.375]
standard deviation= class=Point name=Unnamed dimension=1 values=[2.42061]
skewness= class=Point name=Unnamed dimension=1 values=[4.64758]
kurtosis= class=Point name=Unnamed dimension=1 values=[73.8]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[5.85938]
parameters= [class=PointWithDescription name=X0 dimension=3 description=[beta,alpha,gamma] values=[7.5,5,-7]]
Standard representative= Pareto(beta = 1, alpha=5, gamma=0)