File: t_PiecewiseHermiteEvaluation_std.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (34 lines) | stat: -rwxr-xr-x 1,083 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ref = ot.SymbolicFunction("x", "sin(x)")
size = 12
locations = [0.0] * size
values = [0.0] * size
derivatives = [0.0] * size
# Build locations/values/derivatives with non-increasing locations
for i in range(size):
    locations[i] = 10.0 * i * i / (size - 1.0) / (size - 1.0)
    values[i] = ref([locations[i]])[0]
    derivatives[i] = ref.gradient([locations[i]])[0, 0]

evaluation = ot.PiecewiseHermiteEvaluation(locations, values, derivatives)
print("evaluation=", evaluation)
# Check the values
X = [[-1.0 + 12.0 * i / (2.0 * size - 1.0)] for i in range(2 * size)]
for x in X:
    print("f( %.12g )=" % x[0], evaluation(x), ", ref=", ref(x))
Y = evaluation(X)
print(Y)

# Test exception enableExtrapolation
locations = [1.0, 2.0, 3.0, 4.0, 5.0]
values = [-2.0, 2.0, 1.0, 3.0, 5.0]
derivatives = [0.0] * 5
evaluation = ot.PiecewiseHermiteEvaluation(locations, values, derivatives)
evaluation.setEnableExtrapolation(False)
f = ot.Function(evaluation)
with ott.assert_raises(TypeError):
    f([-12.5])