1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ref = ot.SymbolicFunction("x", "sin(x)")
size = 12
locations = [0.0] * size
values = [0.0] * size
derivatives = [0.0] * size
# Build locations/values/derivatives with non-increasing locations
for i in range(size):
locations[i] = 10.0 * i * i / (size - 1.0) / (size - 1.0)
values[i] = ref([locations[i]])[0]
derivatives[i] = ref.gradient([locations[i]])[0, 0]
evaluation = ot.PiecewiseHermiteEvaluation(locations, values, derivatives)
print("evaluation=", evaluation)
# Check the values
X = [[-1.0 + 12.0 * i / (2.0 * size - 1.0)] for i in range(2 * size)]
for x in X:
print("f( %.12g )=" % x[0], evaluation(x), ", ref=", ref(x))
Y = evaluation(X)
print(Y)
# Test exception enableExtrapolation
locations = [1.0, 2.0, 3.0, 4.0, 5.0]
values = [-2.0, 2.0, 1.0, 3.0, 5.0]
derivatives = [0.0] * 5
evaluation = ot.PiecewiseHermiteEvaluation(locations, values, derivatives)
evaluation.setEnableExtrapolation(False)
f = ot.Function(evaluation)
with ott.assert_raises(TypeError):
f([-12.5])
|