File: t_ProbabilitySimulationAlgorithm_draw.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (52 lines) | stat: -rwxr-xr-x 1,233 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()


# We create a numerical math function
myFunction = ot.SymbolicFunction(("E", "F", "L", "I"), ("-F*L^3/(3.*E*I)",))

dim = myFunction.getInputDimension()

# We create a normal distribution point of dimension 1
mean = ot.Point(dim, 0.0)
# E
mean[0] = 50.0
# F
mean[1] = 1.0
# L
mean[2] = 10.0
# I
mean[3] = 5.0
sigma = ot.Point(dim, 1.0)
R = ot.IdentityMatrix(dim)
myDistribution = ot.Normal(mean, sigma, R)

# We create a 'usual' RandomVector from the Distribution
vect = ot.RandomVector(myDistribution)

# We create a composite random vector
output = ot.CompositeRandomVector(myFunction, vect)

# We create an Event from this RandomVector
myEvent = ot.ThresholdEvent(output, ot.Less(), -3.0)

# We create a Monte Carlo algorithm
experiment = ot.MonteCarloExperiment()
myAlgo = ot.ProbabilitySimulationAlgorithm(myEvent, experiment)
myAlgo.setMaximumOuterSampling(500)
myAlgo.setBlockSize(10)
myAlgo.setMaximumCoefficientOfVariation(0.05)

print("MonteCarlo=", myAlgo)

# Perform the simulation
myAlgo.run()

# Stream out the result
print("MonteCarlo result=", myAlgo.getResult())

# Draw the convergence graph
convergenceGraph = myAlgo.drawProbabilityConvergence()