File: t_QuadraticTaylor_std.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (24 lines) | stat: -rwxr-xr-x 832 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#! /usr/bin/env python

import openturns as ot

eps = 0.4
# Instance creation
myFunc = ot.SymbolicFunction(
    ["x1", "x2"], ["x1*sin(x2)", "cos(x1+x2)", "(x2+1)*exp(x1-2*x2)"]
)
center = ot.Point(myFunc.getInputDimension())
for i in range(center.getDimension()):
    center[i] = 1.0 + i
myTaylor = ot.QuadraticTaylor(center, myFunc)
myTaylor.run()
responseSurface = ot.Function(myTaylor.getMetaModel())
print("myTaylor=", repr(myTaylor))
print("responseSurface=", repr(responseSurface))
print("myFunc(", repr(center), ")=", repr(myFunc(center)))
print("responseSurface(", repr(center), ")=", repr(responseSurface(center)))
inPoint = ot.Point(center)
inPoint[0] += eps
inPoint[1] -= eps / 2
print("myFunc(", repr(inPoint), ")=", repr(myFunc(inPoint)))
print("responseSurface(", repr(inPoint), ")=", repr(responseSurface(inPoint)))