1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
import openturns.experimental as otexp
alpha = 0.05
beta = 0.95
algo = otexp.QuantileConfidence(alpha, beta)
print(algo)
print(repr(algo))
algo.setAlpha(alpha)
algo.setBeta(beta)
assert algo.getAlpha() == alpha
assert algo.getBeta() == beta
# lower rank
print("lower rank ...")
k_ref = {
59: 0,
93: 1,
124: 2,
153: 3,
181: 4,
208: 5,
311: 9,
410: 13,
506: 17,
717: 26,
809: 30,
900: 34,
1036: 40,
}
for i in range(991, 1013):
k_ref[i] = 38
k_ref[1013] = 39
for n in k_ref.keys():
ll = algo.computeUnilateralRank(n, True)
p = ot.Binomial(n, alpha).computeComplementaryCDF(ll)
print(f"n={n} l={ll} ref={k_ref[n]} p={p}")
assert ll == k_ref[n]
assert p >= beta
# upper rank
print("upper rank ...")
algo.setAlpha(0.95)
k_ref = {
59: 58,
93: 91,
124: 121,
153: 149,
181: 176,
208: 202,
311: 301,
410: 396,
506: 488,
601: 579,
717: 690,
809: 778,
900: 865,
1013: 973,
1036: 995,
}
for n in k_ref.keys():
u = algo.computeUnilateralRank(n)
p = ot.Binomial(n, alpha).computeCDF(u)
print(f"n={n} u={u} ref={k_ref[n]} p={p}")
assert u == k_ref[n]
assert p >= beta
# bilateral ranks
print("bilateral ranks ...")
algo.setAlpha(0.05)
algo = otexp.QuantileConfidence(alpha, beta)
k_ref = {
59: (0, 9),
60: (0, 8),
70: (0, 8),
80: (0, 8),
90: (0, 8),
100: (1, 10),
150: (1, 12),
200: (2, 15),
250: (3, 18),
300: (4, 21),
400: (11, 28),
500: (12, 33),
600: (19, 40),
700: (25, 50),
800: (22, 50),
900: (34, 69),
1000: (36, 63),
10000: (437, 536),
100000: (4879, 5160),
}
for n in k_ref.keys():
k1, k2 = algo.computeBilateralRank(n)
binomial = ot.Binomial(n, alpha)
p = binomial.computeProbability(ot.Interval(k1, k2))
print(f"n={n} k1={k1} k2={k2} p={p:.6f}")
assert (k1, k2) == k_ref[n]
assert p >= beta
# we can also make sure by exploring all combinations (costly)
if n > 100:
continue
bestP = 2
for i1 in range(n):
for i2 in range(i1, n):
# we compute P(k1<X<=k2)=P(k1+1<=X<=k2), CDF(k2)-CDF(k1) also works
p = binomial.computeProbability(ot.Interval(i1 + 1, i2))
if (p >= beta) and (p < bestP):
bestP = p
bestK1K2 = i1, i2
# print(n, bestK1K2, bestP)
assert (k1, k2) == bestK1K2
# validate confidence intervals by probability estimation
n = 100
distribution = ot.Gumbel()
nreps = 3000
p1 = 0.0
p2 = 0.0
p3 = 0.0
for r in range(nreps):
sample = distribution.getSample(n)
interval1 = algo.computeUnilateralConfidenceInterval(sample)
interval1_bis, coverage1 = algo.computeUnilateralConfidenceIntervalWithCoverage(
sample
)
interval2 = algo.computeUnilateralConfidenceInterval(sample, True)
interval2_bis, coverage2 = algo.computeUnilateralConfidenceIntervalWithCoverage(
sample, True
)
interval3 = algo.computeBilateralConfidenceInterval(sample)
interval3_bis, coverage3 = algo.computeBilateralConfidenceIntervalWithCoverage(
sample
)
assert interval1 == interval1_bis
assert interval2 == interval2_bis
assert interval3 == interval3_bis
assert coverage1 >= beta
assert coverage2 >= beta
assert coverage3 >= beta
ott.assert_almost_equal(coverage1, 0.97, 0.005, 0.0)
ott.assert_almost_equal(coverage2, 0.96, 0.005, 0.0)
ott.assert_almost_equal(coverage3, 0.95, 0.005, 0.0)
q = distribution.computeQuantile(alpha)
if interval1.contains(q):
p1 += 1.0 / nreps
if interval2.contains(q):
p2 += 1.0 / nreps
if interval3.contains(q):
p3 += 1.0 / nreps
print(f"p1={p1:.6f} p2={p2:.6f} p3={p3:.6f}")
assert p1 >= beta
assert p2 >= beta
assert p3 >= beta
ott.assert_almost_equal(p1, coverage1, 0.005, 0.0)
ott.assert_almost_equal(p2, coverage2, 0.01, 0.0)
ott.assert_almost_equal(p3, coverage3, 0.005, 0.0)
# minimum size
print("minimum size ...")
ref_a = {} # dict of reference size values for different (alpha, beta) pairs
ref_a[(0.01, 0.99)] = 459
ref_a[(0.01, 0.95)] = 299
ref_a[(0.01, 0.9)] = 230
ref_a[(0.05, 0.99)] = 90
ref_a[(0.05, 0.95)] = 59
ref_a[(0.05, 0.9)] = 45
ref_a[(0.1, 0.99)] = 44
ref_a[(0.1, 0.95)] = 29
ref_a[(0.1, 0.9)] = 22
ref_a[(0.75, 0.99)] = 4
ref_a[(0.75, 0.95)] = 3
ref_a[(0.75, 0.9)] = 2
ref_a[(0.9, 0.99)] = 2
ref_a[(0.9, 0.95)] = 2
ref_a[(0.9, 0.9)] = 1
ref_a[(0.95, 0.99)] = 2
ref_a[(0.95, 0.95)] = 1
ref_a[(0.95, 0.9)] = 1
ref_a[(0.99, 0.99)] = 1
ref_a[(0.99, 0.95)] = 1
ref_a[(0.99, 0.9)] = 1
ref_b = {}
ref_b[(0.01, 0.9)] = 1
ref_b[(0.01, 0.95)] = 1
ref_b[(0.01, 0.99)] = 1
ref_b[(0.05, 0.9)] = 1
ref_b[(0.05, 0.95)] = 1
ref_b[(0.05, 0.99)] = 2
ref_b[(0.1, 0.9)] = 1
ref_b[(0.1, 0.95)] = 2
ref_b[(0.1, 0.99)] = 2
ref_b[(0.25, 0.9)] = 2
ref_b[(0.25, 0.95)] = 3
ref_b[(0.25, 0.99)] = 4
ref_b[(0.75, 0.9)] = 9
ref_b[(0.75, 0.95)] = 11
ref_b[(0.75, 0.99)] = 17
ref_b[(0.9, 0.9)] = 22
ref_b[(0.9, 0.95)] = 29
ref_b[(0.9, 0.99)] = 44
ref_b[(0.95, 0.9)] = 45
ref_b[(0.95, 0.95)] = 59
ref_b[(0.95, 0.99)] = 90
ref_b[(0.99, 0.9)] = 230
ref_b[(0.99, 0.95)] = 299
ref_b[(0.99, 0.99)] = 459
ref_c = {}
ref_c[(0.01, 0.9)] = 230
ref_c[(0.01, 0.95)] = 299
ref_c[(0.01, 0.99)] = 459
ref_c[(0.05, 0.9)] = 45
ref_c[(0.05, 0.95)] = 59
ref_c[(0.05, 0.99)] = 90
ref_c[(0.1, 0.9)] = 22
ref_c[(0.1, 0.95)] = 29
ref_c[(0.1, 0.99)] = 44
ref_c[(0.25, 0.9)] = 9
ref_c[(0.25, 0.95)] = 11
ref_c[(0.25, 0.99)] = 17
ref_c[(0.75, 0.9)] = 9
ref_c[(0.75, 0.95)] = 11
ref_c[(0.75, 0.99)] = 17
ref_c[(0.9, 0.9)] = 22
ref_c[(0.9, 0.95)] = 29
ref_c[(0.9, 0.99)] = 44
ref_c[(0.95, 0.9)] = 45
ref_c[(0.95, 0.95)] = 59
ref_c[(0.95, 0.99)] = 90
ref_c[(0.99, 0.9)] = 230
ref_c[(0.99, 0.95)] = 299
ref_c[(0.99, 0.99)] = 459
for alpha in [0.01, 0.05, 0.10, 0.25, 0.75, 0.90, 0.95, 0.99]:
for beta in [0.90, 0.95, 0.99]:
algo = otexp.QuantileConfidence(alpha, beta)
# lower
for r in range(5):
n = algo.computeUnilateralMinimumSampleSize(r)
p = ot.Binomial(n, alpha).computeComplementaryCDF(r)
pPrev = ot.Binomial(n - 1, alpha).computeComplementaryCDF(r)
print(
f"alpha={alpha:.3f} beta={beta:.3f} r={r} n={n} p={p:.6f} pPrev={pPrev:.6f}"
)
assert p >= beta
assert pPrev < beta
if r == 0 and (alpha, beta) in ref_a:
assert n == ref_a[(alpha, beta)]
# upper
for r in range(5):
n = algo.computeUnilateralMinimumSampleSize(r, True)
p = ot.Binomial(n, alpha).computeCDF(n - 1 - r)
pPrev = ot.Binomial(n - 1, alpha).computeCDF((n - 1) - 1 - r)
print(
f"alpha={alpha:.3f} beta={beta:.3f} r={r} n={n} p={p:.6f} pPrev={pPrev:.6f}"
)
assert p >= beta
assert pPrev < beta
if r == 0 and (alpha, beta) in ref_b:
assert n == ref_b[(alpha, beta)]
# bilateral
n = algo.computeBilateralMinimumSampleSize()
p = 1 - alpha**n - (1 - alpha) ** n
pPrev = 1 - alpha ** (n - 1) - (1 - alpha) ** (n - 1)
print(
f"alpha={alpha:.3f} beta={beta:.3f} r={r} n={n} p={p:.6f} pPrev={pPrev:.6f}"
)
assert p >= beta
assert pPrev < beta
if (alpha, beta) in ref_c:
assert n == ref_c[(alpha, beta)]
# table J13 from Meeker2017
for alpha in [
0.5,
0.55,
0.6,
0.65,
0.7,
0.75,
0.8,
0.85,
0.9,
0.95,
0.96,
0.97,
0.98,
0.99,
0.995,
0.999,
]:
print(f"{alpha:.3f} | ", end=" ")
for beta in [0.5, 0.75, 0.9, 0.95, 0.98, 0.99, 0.999]:
algo = otexp.QuantileConfidence(alpha, beta)
n = algo.computeUnilateralMinimumSampleSize(0, True)
if alpha == 0.5 and beta == 0.75:
print(f"alpha={alpha} beta={beta} n={n}")
print(f"{n: >6}", end=" ")
print("")
n_ref = {}
n_ref[(0.5, 0.5)] = 1
n_ref[(0.5, 0.75)] = 2
n_ref[(0.5, 0.9)] = 4
n_ref[(0.5, 0.95)] = 5
n_ref[(0.5, 0.98)] = 6
n_ref[(0.5, 0.99)] = 7
n_ref[(0.5, 0.999)] = 10
n_ref[(0.55, 0.5)] = 2
n_ref[(0.55, 0.75)] = 3
n_ref[(0.55, 0.9)] = 4
n_ref[(0.55, 0.95)] = 6
n_ref[(0.55, 0.98)] = 7
n_ref[(0.55, 0.99)] = 8
n_ref[(0.55, 0.999)] = 12
n_ref[(0.6, 0.5)] = 2
n_ref[(0.6, 0.75)] = 3
n_ref[(0.6, 0.9)] = 5
n_ref[(0.6, 0.95)] = 6
n_ref[(0.6, 0.98)] = 8
n_ref[(0.6, 0.99)] = 10
n_ref[(0.6, 0.999)] = 14
n_ref[(0.65, 0.5)] = 2
n_ref[(0.65, 0.75)] = 4
n_ref[(0.65, 0.9)] = 6
n_ref[(0.65, 0.95)] = 7
n_ref[(0.65, 0.98)] = 10
n_ref[(0.65, 0.99)] = 11
n_ref[(0.65, 0.999)] = 17
n_ref[(0.7, 0.5)] = 2
n_ref[(0.7, 0.75)] = 4
n_ref[(0.7, 0.9)] = 7
n_ref[(0.7, 0.95)] = 9
n_ref[(0.7, 0.98)] = 11
n_ref[(0.7, 0.99)] = 13
n_ref[(0.7, 0.999)] = 20
n_ref[(0.75, 0.5)] = 3
n_ref[(0.75, 0.75)] = 5
n_ref[(0.75, 0.9)] = 9
n_ref[(0.75, 0.95)] = 11
n_ref[(0.75, 0.98)] = 14
n_ref[(0.75, 0.99)] = 17
n_ref[(0.75, 0.999)] = 25
n_ref[(0.8, 0.5)] = 4
n_ref[(0.8, 0.75)] = 7
n_ref[(0.8, 0.9)] = 11
n_ref[(0.8, 0.95)] = 14
n_ref[(0.8, 0.98)] = 18
n_ref[(0.8, 0.99)] = 21
n_ref[(0.8, 0.999)] = 31
n_ref[(0.85, 0.5)] = 5
n_ref[(0.85, 0.75)] = 9
n_ref[(0.85, 0.9)] = 15
n_ref[(0.85, 0.95)] = 19
n_ref[(0.85, 0.98)] = 25
n_ref[(0.85, 0.99)] = 29
n_ref[(0.85, 0.999)] = 43
n_ref[(0.9, 0.5)] = 7
n_ref[(0.9, 0.75)] = 14
n_ref[(0.9, 0.9)] = 22
n_ref[(0.9, 0.95)] = 29
n_ref[(0.9, 0.98)] = 38
n_ref[(0.9, 0.99)] = 44
n_ref[(0.9, 0.999)] = 66
n_ref[(0.95, 0.5)] = 14
n_ref[(0.95, 0.75)] = 28
n_ref[(0.95, 0.9)] = 45
n_ref[(0.95, 0.95)] = 59
n_ref[(0.95, 0.98)] = 77
n_ref[(0.95, 0.99)] = 90
n_ref[(0.95, 0.999)] = 135
n_ref[(0.96, 0.5)] = 17
n_ref[(0.96, 0.75)] = 34
n_ref[(0.96, 0.9)] = 57
n_ref[(0.96, 0.95)] = 74
n_ref[(0.96, 0.98)] = 96
n_ref[(0.96, 0.99)] = 113
n_ref[(0.96, 0.999)] = 170
n_ref[(0.97, 0.5)] = 23
n_ref[(0.97, 0.75)] = 46
n_ref[(0.97, 0.9)] = 76
n_ref[(0.97, 0.95)] = 99
n_ref[(0.97, 0.98)] = 129
n_ref[(0.97, 0.99)] = 152
n_ref[(0.97, 0.999)] = 227
n_ref[(0.98, 0.5)] = 35
n_ref[(0.98, 0.75)] = 69
n_ref[(0.98, 0.9)] = 114
n_ref[(0.98, 0.95)] = 149
n_ref[(0.98, 0.98)] = 194
n_ref[(0.98, 0.99)] = 228
n_ref[(0.98, 0.999)] = 342
n_ref[(0.99, 0.5)] = 69
n_ref[(0.99, 0.75)] = 138
n_ref[(0.99, 0.9)] = 230
n_ref[(0.99, 0.95)] = 299
n_ref[(0.99, 0.98)] = 390
n_ref[(0.99, 0.99)] = 459
n_ref[(0.99, 0.999)] = 688
n_ref[(0.995, 0.5)] = 139
n_ref[(0.995, 0.75)] = 277
n_ref[(0.995, 0.9)] = 460
n_ref[(0.995, 0.95)] = 598
n_ref[(0.995, 0.98)] = 781
n_ref[(0.995, 0.99)] = 919
n_ref[(0.995, 0.999)] = 1379
n_ref[(0.999, 0.5)] = 693
n_ref[(0.999, 0.75)] = 1386
n_ref[(0.999, 0.9)] = 2302
n_ref[(0.999, 0.95)] = 2995
n_ref[(0.999, 0.98)] = 3911
n_ref[(0.999, 0.99)] = 4603
n_ref[(0.999, 0.999)] = 6905
for alpha, beta in n_ref.keys():
algo = otexp.QuantileConfidence(alpha, beta)
n = algo.computeUnilateralMinimumSampleSize(0, True)
ref = n_ref[(alpha, beta)]
print(f"alpha={alpha} beta={beta} n={n} ref={ref}")
assert n == ref
# asymptotic confidence
print("asymptotic confidence ...")
alpha = 0.1
beta = 0.95
algo = otexp.QuantileConfidence(alpha, beta)
dist = ot.Gumbel()
qalpha = dist.computeQuantile(alpha)
for i in range(3, 7):
n = 10**i
k1, k2 = algo.computeAsymptoticBilateralRank(n)
binom = ot.Binomial(n, alpha)
p = binom.computeProbability(ot.Interval(k1, k2))
print(f"n={n} ci=[{k1}, {k2}] p={p}")
atol = 2.0 * n**-0.5
ott.assert_almost_equal(p, beta, 0.0, atol)
if n <= 1e4:
sample = dist.getSample(n)
ci = algo.computeAsymptoticBilateralConfidenceInterval(sample)
assert ci.contains(qalpha)
|