File: t_QuantileMatchingFactory_std.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (74 lines) | stat: -rwxr-xr-x 2,420 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

# need a proper LS solver
if not ot.PlatformInfo.HasFeature("cminpack") or not ot.PlatformInfo.HasFeature(
    "ceres"
):
    exit(0)

size = 10000

# gumbel
distribution = ot.Gumbel(1.5, -0.5)
print("distribution=", distribution)
sample = distribution.getSample(size)
factory = ot.QuantileMatchingFactory(ot.Gumbel(), [0.01, 0.99])
inf_dist = factory.build(sample)
print("estimated distribution=", inf_dist)
ott.assert_almost_equal(
    distribution.getParameter(), inf_dist.getParameter(), 1e-2, 1e-2
)

# set (a,b) out of (r, t, a, b)
distribution = ot.Beta(2.3, 2.2, -1.0, 1.0)
p_ref = distribution.getParameter()
print("distribution=", distribution)
sample = distribution.getSample(size)
factory = ot.QuantileMatchingFactory(ot.Beta(), [0.01, 0.99])
factory.setKnownParameter([2, 3], [-1.0, 1.0])
inf_dist = factory.build(sample)
print("estimated distribution=", inf_dist)
ott.assert_almost_equal(inf_dist.getParameter(), p_ref, 1e-2, 1e-2)

# full probas
probabilities = [0.01, 1 / 3, 2 / 3, 0.99]
factory = ot.QuantileMatchingFactory(ot.Beta(), probabilities)
quantiles = [distribution.computeQuantile(pi)[0] for pi in probabilities]
inf_dist = factory.buildFromQuantiles(quantiles)
print("estimated distribution (quantiles)=", inf_dist)
ott.assert_almost_equal(inf_dist.getParameter(), p_ref, 1e-2, 1e-2)

# from quantiles, known parameters
factory = ot.QuantileMatchingFactory(ot.Beta(), [0.01, 0.99])
factory.setKnownParameter([2, 3], [-1.0, 1.0])
quantiles = [-0.847, 0.867]
inf_dist = factory.buildFromQuantiles(quantiles)
print("estimated distribution (quantiles)=", inf_dist)
probabilities = factory.getProbabilities()
ott.assert_almost_equal(inf_dist.getParameter(), p_ref, 1e-2, 1e-2)

# ill defined case
probabilities = [0.05, 0.25, 0.75, 0.95]
factory = ot.QuantileMatchingFactory(ot.Beta(), probabilities)
quantiles = [-4.0, 1.0, 2.0, 10.0]
ok = False
try:
    match_dist = factory.buildFromQuantiles(quantiles)
except Exception:
    ok = True
assert ok, "should raise"

# Normal, optimal far away
distribution = ot.Normal(17.0, 1.0)
print("distribution=", distribution)
sample = distribution.getSample(size)
factory = ot.QuantileMatchingFactory(ot.Normal(), [0.01, 0.99])
inf_dist = factory.build(sample)
ott.assert_almost_equal(
    inf_dist.getParameter(), distribution.getParameter(), 1e-2, 1e-2
)