1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
#! /usr/bin/env python
import openturns as ot
from openturns.usecases import ishigami_function
ot.TESTPREAMBLE()
input_dimension = 3
output_dimension = 1
formula = [
"sin(pi_*X1)+7*sin(pi_*X2)*sin(pi_*X2)+0.1*((pi_*X3)*(pi_*X3)*(pi_*X3)*(pi_*X3))*sin(pi_*X1)"
]
model = ot.SymbolicFunction(["X1", "X2", "X3"], formula)
distribution = ot.JointDistribution([ot.Uniform(-1.0, 1.0)] * input_dimension)
# Size of simulation
size = 10000
# Test with the various implementation methods
methods = ["Saltelli", "Jansen", "MauntzKucherenko", "Martinez"]
# Test the different sampling options
samplings = ["MonteCarlo", "LHS", "QMC"]
# Generate input/output designs
computeSO = True
# Case 1 : Estimation of sensitivity using estimator and no bootstrap
for method in methods:
for sampling in samplings:
ot.ResourceMap.SetAsString("SobolIndicesExperiment-SamplingMethod", sampling)
sensitivity_algorithm = eval(
"ot."
+ method
+ "SensitivityAlgorithm(distribution, size, model, computeSO)"
)
print("Method of evaluation=", method)
print("Method of sampling=", sampling)
# Get first order indices
fo = sensitivity_algorithm.getFirstOrderIndices()
print("First order indices = ", fo)
# Get total order indices
to = sensitivity_algorithm.getTotalOrderIndices()
print("Total order indices = ", to)
# Get the confidence interval thanks to Bootstrap
nr_bootstrap = 100
confidence_level = 0.95
sensitivity_algorithm.setBootstrapSize(nr_bootstrap)
sensitivity_algorithm.setConfidenceLevel(confidence_level)
sensitivity_algorithm.setUseAsymptoticDistribution(False)
interval_fo = sensitivity_algorithm.getFirstOrderIndicesInterval()
interval_to = sensitivity_algorithm.getTotalOrderIndicesInterval()
print("bootstrap intervals")
print("First order indices interval = ", interval_fo)
print("Total order indices interval = ", interval_to)
# Asymptotic confidence interval
sensitivity_algorithm.setUseAsymptoticDistribution(True)
interval_fo_asymptotic = sensitivity_algorithm.getFirstOrderIndicesInterval()
interval_to_asymptotic = sensitivity_algorithm.getTotalOrderIndicesInterval()
print("asymptotic intervals:")
print(
"First order indices distribution = ",
sensitivity_algorithm.getFirstOrderIndicesDistribution(),
)
print(
"Total order indices distribution = ",
sensitivity_algorithm.getTotalOrderIndicesDistribution(),
)
print("First order indices interval = ", interval_fo_asymptotic)
print("Total order indices interval = ", interval_to_asymptotic)
# with experiment
sequence = ot.SobolSequence(input_dimension)
experiment = ot.LowDiscrepancyExperiment(
sequence, ot.JointDistribution([ot.Uniform(0.0, 1.0)] * input_dimension), size
)
sensitivity_algorithm = ot.SaltelliSensitivityAlgorithm(experiment, model)
print(sensitivity_algorithm.getFirstOrderIndices())
# multi variate model
model_aggregated = ot.SymbolicFunction(
["X1", "X2", "X3"],
["2*X1 + X2 - 3*X3 + 0.3*X1*X2", "-5*X1 + 4*X2 - 0.8*X2*X3 + 2*X3"],
)
distribution_aggregated = ot.JointDistribution([ot.Uniform()] * 3)
inputDesign = ot.SobolIndicesExperiment(distribution_aggregated, size).generate()
outputDesign = model_aggregated(inputDesign)
# Case 1 : Estimation of sensitivity using estimator and no bootstrap
for method in methods:
sensitivity_algorithm = eval(
"ot." + method + "SensitivityAlgorithm(inputDesign, outputDesign, size)"
)
print("Method of evaluation=", method)
# Get first order indices
fo = sensitivity_algorithm.getAggregatedFirstOrderIndices()
print("Aggregated first order indices = ", fo)
# Get total order indices
to = sensitivity_algorithm.getAggregatedTotalOrderIndices()
print("Aggregated total order indices = ", to)
# Get the confidence interval thanks to Bootstrap
nr_bootstrap = 100
confidence_level = 0.95
# sensitivity_algorithm = ot.MartinezSensitivityAlgorithm(
# inputDesign, outputDesign, size)
sensitivity_algorithm.setBootstrapSize(nr_bootstrap)
sensitivity_algorithm.setConfidenceLevel(confidence_level)
sensitivity_algorithm.setUseAsymptoticDistribution(False)
interval_fo = sensitivity_algorithm.getFirstOrderIndicesInterval()
interval_to = sensitivity_algorithm.getTotalOrderIndicesInterval()
print("bootstrap intervals")
print("Aggregated first order indices interval = ", interval_fo)
print("Aggregated total order indices interval = ", interval_to)
# Asymptotic confidence interval
sensitivity_algorithm.setUseAsymptoticDistribution(True)
interval_fo_asymptotic = sensitivity_algorithm.getFirstOrderIndicesInterval()
interval_to_asymptotic = sensitivity_algorithm.getTotalOrderIndicesInterval()
print("asymptotic intervals:")
print("Aggregated first order indices interval = ", interval_fo_asymptotic)
print("Aggregated total order indices interval = ", interval_to_asymptotic)
# special case in dim=2
ot.ResourceMap.SetAsString("SobolIndicesExperiment-SamplingMethod", "MonteCarlo")
ot.RandomGenerator.SetSeed(0)
distribution = ot.JointDistribution([ot.Uniform()] * 2)
size = 1000
model = ot.SymbolicFunction(["X1", "X2"], ["2*X1 + X2"])
sensitivity_algorithm = ot.SaltelliSensitivityAlgorithm(distribution, size, model, True)
print(sensitivity_algorithm.getSecondOrderIndices())
ot.RandomGenerator.SetSeed(0)
experiment = ot.MonteCarloExperiment(distribution, size)
sensitivity_algorithm = ot.SaltelliSensitivityAlgorithm(experiment, model, True)
print(sensitivity_algorithm.getSecondOrderIndices())
ot.RandomGenerator.SetSeed(0)
x = ot.SobolIndicesExperiment(distribution, size, True).generate()
y = model(x)
sensitivity_algorithm = ot.SaltelliSensitivityAlgorithm(x, y, size)
print(sensitivity_algorithm.getSecondOrderIndices())
# null contribution case: X3 not in output formula
model = ot.SymbolicFunction(["X1", "X2", "X3"], ["10+3*X1+X2"])
distribution = ot.JointDistribution([ot.Uniform(-1.0, 1.0)] * input_dimension)
size = 10000
for method in methods:
sensitivity_algorithm = eval(
"ot." + method + "SensitivityAlgorithm(distribution, size, model, False)"
)
sensitivity_algorithm.setUseAsymptoticDistribution(True)
fo = sensitivity_algorithm.getFirstOrderIndices()
print("First order indices = ", fo)
to = sensitivity_algorithm.getTotalOrderIndices()
# print("Total order indices = ", to)
interval_fo = sensitivity_algorithm.getFirstOrderIndicesInterval()
interval_to = sensitivity_algorithm.getTotalOrderIndicesInterval()
print("Aggregated first order indices interval = ", interval_fo)
# print("Aggregated total order indices interval = ", interval_to)
# setDesign must reset results across runs
ot.Log.Show(ot.Log.NONE)
im = ishigami_function.IshigamiModel()
exact_first_order = ot.Point([im.S1, im.S2, im.S3])
exact_total_order = ot.Point([im.ST1, im.ST2, im.ST3])
sobolIndicesAlgorithmB = ot.SaltelliSensitivityAlgorithm()
for sample_size in [100, 1000, 10000]:
print("Size:", sample_size)
# Method A : classical
X = ot.SobolIndicesExperiment(im.distribution, sample_size).generate()
Y = im.model(X)
sobolIndicesAlgorithmA = ot.SaltelliSensitivityAlgorithm(X, Y, sample_size)
computed_first_orderA = sobolIndicesAlgorithmA.getFirstOrderIndices()
computed_total_orderA = sobolIndicesAlgorithmA.getTotalOrderIndices()
first_error = computed_first_orderA - exact_first_order
total_error = computed_total_orderA - exact_total_order
print("Method A :", first_error, total_error)
# Method B : setDesign
sobolIndicesAlgorithmB.setDesign(X, Y, sample_size)
computed_first_orderB = sobolIndicesAlgorithmB.getFirstOrderIndices()
computed_total_orderB = sobolIndicesAlgorithmB.getTotalOrderIndices()
first_error = computed_first_orderB - exact_first_order
total_error = computed_total_orderB - exact_total_order
print("Method B :", first_error, total_error)
assert computed_first_orderB == computed_first_orderA, "wrong first"
assert computed_total_orderB == computed_total_orderA, "wrong total"
|