1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
#! /usr/bin/env python
import openturns as ot
# DEFAULT CONSTRUCTOR AND STRING CONVERTER
print("test : default constructor and string converter")
# Default constructor
squareComplexMatrix0 = ot.SquareComplexMatrix()
# String converter
print("squareComplexMatrix0 = ", repr(squareComplexMatrix0))
# CONSTRUCTOR WITH SIZE, OPERATOR() AND STRING CONVERTER
print("test : constructor with size, operator() and string converter")
# Constructor with size
squareComplexMatrix1 = ot.SquareComplexMatrix(2)
# Check operator() methods
squareComplexMatrix1[0, 0] = 1.0 + 1j
squareComplexMatrix1[0, 1] = 3.0 + 1j
squareComplexMatrix1[1, 0] = 1.0j
squareComplexMatrix1[1, 1] = 5.0 + 1.0j
# String converter
print("squareComplexMatrix1 = ", repr(squareComplexMatrix1))
# COPY CONSTRUCTOR AND STRING CONVERTER
print("test : copy constructor and string converter")
# Copy constructor
squareComplexMatrix2 = ot.SquareComplexMatrix(squareComplexMatrix1)
# String converter
print("squareComplexMatrix2 = ", repr(squareComplexMatrix2))
# GET DIMENSIONS METHODS
print("test : get dimensions methods")
# Get dimension methods
print("squareComplexMatrix1's nbRows = ", squareComplexMatrix1.getNbRows())
print("squareComplexMatrix1's nbColumns = ", squareComplexMatrix1.getNbColumns())
# CONJUGATE METHOD
print("test : conjugate method")
# Check conjugate method
squareComplexMatrix4 = squareComplexMatrix1.conjugate()
print("squareComplexMatrix1 conjugate = ", repr(squareComplexMatrix4))
# ADDITION METHOD
print("test : addition method")
# Check addition method : we check the operator and the symmetry of the
# operator, thus testing the comparison operator
sum1 = squareComplexMatrix1 + squareComplexMatrix4
sum2 = squareComplexMatrix4 + squareComplexMatrix1
print("sum1 = ", repr(sum1))
print("sum2 = ", repr(sum2))
print("sum1 equals sum2 = ", sum1 == sum2)
# SUBTRACTION METHOD
print("test : subtraction method")
# Check subtraction method
diff = squareComplexMatrix1 - squareComplexMatrix4
print("diff = ", repr(diff))
# MATRIX MULTIPLICATION METHOD
print("test : matrix multiplication method")
# Check multiplication method
prod = squareComplexMatrix1 * squareComplexMatrix4
print("prod = ", repr(prod))
# MULTIPLICATION WITH A NUMERICAL POINT METHOD
print("test : multiplication with a numerical point method")
# Create the numerical point
pt = ot.ComplexCollection(2)
pt[0] = 1.0 + 1j
pt[1] = 1j
print("pt = ", repr(pt))
# Check the product method
ptResult = squareComplexMatrix1 * pt
print("ptResult = ", repr(ptResult))
# MULTIPLICATION AND DIVISION BY A NUMERICAL SCALAR METHODS
print("test : multiplication and division by a numerical scalar methods")
# Check the multiplication method
s = 3.0 + 2j
scalprod = squareComplexMatrix1 * s
print("scalprod = ", repr(scalprod))
# Check the division method
scaldiv1 = squareComplexMatrix1 / s
scaldiv2 = squareComplexMatrix1 / s
print("scaldiv1 = ", repr(scaldiv1))
print("scaldiv2 = ", repr(scaldiv2))
print("scaldiv1 equals scaldiv2 = ", (scaldiv1 == scaldiv2))
# ISEMPTY METHOD
print("test : isEmpty method")
# Check method isEmpty
squareComplexMatrix5 = ot.SquareComplexMatrix()
squareComplexMatrix6 = ot.SquareComplexMatrix()
print("squareComplexMatrix0 is empty = ", squareComplexMatrix0.isEmpty())
print("squareComplexMatrix1 is empty = ", squareComplexMatrix1.isEmpty())
print("squareComplexMatrix5 is empty = ", squareComplexMatrix5.isEmpty())
|