File: t_SquaredNormal_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (37 lines) | stat: -rw-r--r-- 1,962 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
Distribution  class=SquaredNormal name=SquaredNormal mu=5.2 sigma=11.6
Distribution  SquaredNormal(mu = 5.2, sigma = 11.6)
Mean=  class=Point name=Unnamed dimension=1 values=[161.6]
Covariance=  class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[50766.8]
Elliptical =  False
oneRealization= class=Point name=Unnamed dimension=1 values=[150.188]
Point=  class=Point name=Unnamed dimension=1 values=[9.1]
ddf     = class=Point name=Unnamed dimension=1 values=[-0.000581252]
log pdf=-4.601591
pdf     =0.010036
cdf=0.185981
ccdf=0.814019
pdf gradient     = class=Point name=Unnamed dimension=2 values=[-0.00036172,-0.000656205]
cdf gradient     = class=Point name=Unnamed dimension=2 values=[-0.00702671,-0.012596]
quantile= class=Point name=Unnamed dimension=1 values=[617.139]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[0.64685]
Survival(inverseSurvival)=0.950000
entropy=5.870512
Minimum volume interval= [0, 617.139]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 8.57247} with f=
MinimumVolumeLevelSetEvaluation(SquaredNormal(mu = 5.2, sigma = 11.6))
beta= [0.000189245]
Bilateral confidence interval= [0.161557, 802.599]
beta= [0.95]
Unilateral confidence interval (lower tail)= [0, 617.139]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.64685, 10774.4]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[161.6]
standard deviation= class=Point name=Unnamed dimension=1 values=[225.315]
skewness= class=Point name=Unnamed dimension=1 values=[2.73125]
kurtosis= class=Point name=Unnamed dimension=1 values=[14.0137]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[50766.8]
parameters= [class=PointWithDescription name=X0 dimension=2 description=[mu,sigma] values=[5.2,11.6]]
Standard representative= SquaredNormal(mu = 5.2, sigma = 11.6)