File: t_Study_saveload.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (369 lines) | stat: -rwxr-xr-x 11,500 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#! /usr/bin/env python

import openturns as ot
import openturns.testing
import os
import math as m

ot.TESTPREAMBLE()

try:
    fileName = "myStudySaveLoad.xml"

    # Create a Study Object by name
    myStudy = ot.Study(fileName)
    point = ot.Point(2, 1.0)
    myStudy.add("point", point)
    myStudy.save()
    myStudy2 = ot.Study(fileName)
    myStudy2.load()
    point2 = ot.Point()
    myStudy2.fillObject("point", point2)
    # cleanup
    os.remove(fileName)

    # Create a Study Object with compression
    myStudy = ot.Study()
    compressionLevel = 5
    myStudy.setStorageManager(ot.XMLStorageManager(fileName + ".gz", compressionLevel))
    point = ot.Point(2, 1.0)
    myStudy.add("point", point)
    myStudy.save()
    myStudy2 = ot.Study(fileName + ".gz")
    myStudy2.load()
    point2 = ot.Point()
    myStudy2.fillObject("point", point2)
    # cleanup
    os.remove(fileName + ".gz")

    # Create a Study Object with compression, direct way
    compressionLevel = 5
    myStudy = ot.Study(fileName, compressionLevel)
    point = ot.Point(2, 1.0)
    myStudy.add("point", point)
    myStudy.save()
    myStudy2 = ot.Study(fileName)
    myStudy2.load()
    point2 = ot.Point()
    myStudy2.fillObject("point", point2)
    # cleanup
    os.remove(fileName)

    # Create a Study Object
    myStudy = ot.Study()
    myStudy.setStorageManager(ot.XMLStorageManager(fileName))

    # Add a PersistentObject to the Study (here a Point)
    p1 = ot.Point(3, 0.0)
    p1.setName("Good")
    p1[0] = 10.0
    p1[1] = 11.0
    p1[2] = 12.0
    myStudy.add(p1)

    # Add another PersistentObject to the Study (here a Sample)
    s1 = ot.Sample(3, 2)
    s1.setName("mySample")
    p2 = ot.Point(2, 0.0)
    p2.setName("One")
    p2[0] = 100.0
    p2[1] = 200.0
    s1[0] = p2
    p3 = ot.Point(2, 0.0)
    p3.setName("Two")
    p3[0] = 101.0
    p3[1] = 201.0
    s1[1] = p3
    p4 = ot.Point(2, 0.0)
    p4.setName("Three")
    p4[0] = 102.0
    p4[1] = 202.0
    s1[2] = p4
    myStudy.add("mySample", s1)

    # Add a point with a description
    pDesc = ot.PointWithDescription(p1)
    desc = pDesc.getDescription()
    desc[0] = "x"
    desc[1] = "y"
    desc[2] = "z"
    pDesc.setDescription(desc)
    myStudy.add(pDesc)

    # Add a matrix
    matrix = ot.Matrix(2, 3)
    matrix[0, 0] = 0
    matrix[0, 1] = 1
    matrix[0, 2] = 2
    matrix[1, 0] = 3
    matrix[1, 1] = 4
    matrix[1, 2] = 5
    myStudy.add("m", matrix)

    # Create a Point that we will try to reinstaciate after reloading
    point = ot.Point(2, 1000.0)
    point.setName("point")
    myStudy.add("point", point)

    # Create a Simulation::Result
    simulationResult = ot.ProbabilitySimulationResult(
        ot.ThresholdEvent(), 0.5, 0.01, 150, 4
    )
    myStudy.add("simulationResult", simulationResult)

    cNameList = [
        "DirectionalSampling",
        "SimulationSensitivityAnalysis",
        "ProbabilitySimulationAlgorithm",
    ]
    for cName in cNameList:
        otClass = getattr(ot, cName)
        instance = otClass()
        print("--", cName, instance)
        myStudy.add(cName, instance)

    # Create a Beta distribution
    beta = ot.Beta(3.0, 2.0, -1.0, 4.0)
    myStudy.add("beta", beta)

    # Create an analytical Function
    input = ot.Description(3)
    input[0] = "a"
    input[1] = "b"
    input[2] = "c"
    formulas = ot.Description(3)
    formulas[0] = "a+b+c"
    formulas[1] = "a-b*c"
    formulas[2] = "(a+2*b^2+3*c^3)/6"
    analytical = ot.SymbolicFunction(input, formulas)
    analytical.setName("analytical")
    analytical.setOutputDescription(["z1", "z2", "z3"])
    myStudy.add("analytical", analytical)

    # Create a TaylorExpansionMoments algorithm
    antecedent = ot.RandomVector(ot.IndependentCopula(analytical.getInputDimension()))
    antecedent.setName("antecedent")
    composite = ot.CompositeRandomVector(analytical, antecedent)
    composite.setName("composite")
    taylorExpansionsMoments = ot.TaylorExpansionMoments(composite)
    taylorExpansionsMoments.setName("taylorExpansionsMoments")
    taylorExpansionsMoments.getMeanFirstOrder()
    taylorExpansionsMoments.getMeanSecondOrder()
    taylorExpansionsMoments.getCovariance()

    myStudy.add("taylorExpansionsMoments", taylorExpansionsMoments)

    # Create a FORMResult
    input2 = ot.Description(2)
    input2[0] = "x"
    input2[1] = "y"
    formula2 = ot.Description(1)
    formula2[0] = "y^2-x"
    model = ot.SymbolicFunction(input2, formula2)
    model.setName("sum")
    input3 = ot.RandomVector(ot.Normal(2))
    input3.setName("input")
    output3 = ot.CompositeRandomVector(model, input3)
    output3.setName("output")
    event = ot.ThresholdEvent(output3, ot.Greater(), 1.0)
    event.setName("failureEvent")
    designPoint = ot.Point(2, 0.0)
    designPoint[0] = 1.0
    formResult = ot.FORMResult(ot.Point(2, 1.0), event, False)
    formResult.setName("formResult")
    formResult.getImportanceFactors()
    formResult.getEventProbabilitySensitivity()
    myStudy.add("formResult", formResult)

    # Create a SORMResult
    sormResult = ot.SORMResult([1.0] * 2, event, False)
    sormResult.setName("sormResult")
    sormResult.getEventProbabilityBreitung()
    sormResult.getEventProbabilityHohenbichler()
    sormResult.getEventProbabilityTvedt()
    sormResult.getGeneralisedReliabilityIndexBreitung()
    sormResult.getGeneralisedReliabilityIndexHohenbichler()
    sormResult.getGeneralisedReliabilityIndexTvedt()
    myStudy.add("sormResult", sormResult)

    # Create a RandomGeneratorState
    ot.RandomGenerator.SetSeed(0)
    randomGeneratorState = ot.RandomGeneratorState(ot.RandomGenerator.GetState())
    myStudy.add("randomGeneratorState", randomGeneratorState)

    # Create a GeneralLinearModelResult
    generalizedLinearModelResult = ot.GeneralLinearModelResult()
    generalizedLinearModelResult.setName("generalizedLinearModelResult")
    myStudy.add("generalizedLinearModelResult", generalizedLinearModelResult)

    # KDTree
    sample = ot.Normal(3).getSample(10)
    kDTree = ot.KDTree(sample)
    myStudy.add("kDTree", kDTree)

    # Distribution parameters

    # ArcsineMuSigma parameter ave
    ams_parameters = ot.ArcsineMuSigma(8.4, 2.25)
    myStudy.add("ams_parameters", ams_parameters)
    # BetaMuSigma parameter save
    bms_parameters = ot.BetaMuSigma(0.2, 0.6, -1, 2)
    myStudy.add("bms_parameters", bms_parameters)
    # GammaMuSigma parameter save
    gmms_parameters = ot.GammaMuSigma(1.5, 2.5, -0.5)
    myStudy.add("gmms_parameters", gmms_parameters)
    # GumbelMuSigma parameter save
    gms_parameters = ot.GumbelMuSigma(1.5, 1.3)
    myStudy.add("gms_parameters", gms_parameters)
    # LogNormalMuSigma parameter save
    lnms_parameters = ot.LogNormalMuSigma(30000.0, 9000.0, 15000)
    myStudy.add("lnms_parameters", lnms_parameters)
    # LogNormalMuSigmaOverMu parameter save
    lnmsm_parameters = ot.LogNormalMuSigmaOverMu(0.63, 5.24, -0.5)
    myStudy.add("lnmsm_parameters", lnmsm_parameters)
    # WeibullMinMuSigma parameter save
    wms_parameters = ot.WeibullMinMuSigma(1.3, 1.23, -0.5)
    myStudy.add("wms_parameters", wms_parameters)

    # MemoizeFunction
    f = ot.SymbolicFunction(["x1", "x2"], ["x1*x2"])
    memoize = ot.MemoizeFunction(f)
    memoize([5, 6])
    myStudy.add("memoize", memoize)

    # print ('Study = ' , myStudy)
    myStudy.save()

    # Create a new Study Object
    myStudy = ot.Study()
    myStudy.setStorageManager(ot.XMLStorageManager(fileName))

    myStudy.load()
    # print 'loaded Study = ' , myStudy

    # MemoizeFunction
    memoize = ot.MemoizeFunction()
    myStudy.fillObject("memoize", memoize)
    print("memoize = ", repr(memoize))
    memoize([5, 6])
    print("memoize.getCacheHits()=", memoize.getCacheHits())

    # Create a Point from the one stored in the Study
    point = ot.Point()
    myStudy.fillObject("point", point)

    print("point = ", repr(point))

    # Create a Sample from the one stored in the Study
    sample = ot.Sample()
    myStudy.fillObject("mySample", sample)

    print("sample = ", repr(sample))

    # Create a Matrix from the one stored in the Study
    matrix = ot.Matrix()
    myStudy.fillObject("m", matrix)

    print("matrix = ", repr(matrix))

    # Create a Simulation::Result from the one stored in the Study
    simulationResult = ot.ProbabilitySimulationResult()
    myStudy.fillObject("simulationResult", simulationResult)

    print("simulation result = ", simulationResult)

    for cName in cNameList:
        otClass = getattr(ot, cName)
        instance = otClass()
        saved = repr(instance)
        myStudy.fillObject(cName, instance)
        print("--", cName, instance)
        loaded = repr(instance)
        if saved != loaded:
            print("saved=", saved)
            print("loaded=", loaded)

    # Create a Beta distribution from the one stored in the Study
    beta = ot.Beta()
    myStudy.fillObject("beta", beta)

    print("beta = ", beta)

    randomGeneratorState = ot.RandomGeneratorState()

    myStudy.fillObject("randomGeneratorState", randomGeneratorState)

    print("randomGeneratorState = ", randomGeneratorState)

    # Create an analytical Function from the one stored in the
    # Study
    analytical = ot.Function()
    myStudy.fillObject("analytical", analytical)

    print("analytical = ", analytical)
    print("analytical.outputDescription=", analytical.getOutputDescription())

    # Create a GeneralLinearModelResult from the one stored in the Study
    generalizedLinearModelResult = ot.GeneralLinearModelResult()
    myStudy.fillObject("generalizedLinearModelResult", generalizedLinearModelResult)

    print("generalizedLinearModelResult = ", generalizedLinearModelResult)

    # KDTree
    kDTree = ot.KDTree()
    myStudy.fillObject("kDTree", kDTree)

    # ArcsineMuSigma parameter loading
    ams_parameters = ot.ArcsineMuSigma()
    myStudy.fillObject("ams_parameters", ams_parameters)
    # BetaMuSigma parameter loading
    bms_parameters = ot.BetaMuSigma()
    myStudy.fillObject("bms_parameters", bms_parameters)
    # GammaMuSigma parameter loading
    gmms_parameters = ot.GammaMuSigma()
    myStudy.fillObject("gmms_parameters", gmms_parameters)
    # GumbelMuSigma parameter loading
    gms_parameters = ot.GumbelMuSigma()
    myStudy.fillObject("gms_parameters", gms_parameters)
    # LogNormalMuSigma parameter loading
    lnms_parameters = ot.LogNormalMuSigma()
    myStudy.fillObject("lnms_parameters", lnms_parameters)
    # LogNormalMuSigmaOverMu parameter loading
    lnmsm_parameters = ot.LogNormalMuSigmaOverMu()
    myStudy.fillObject("lnmsm_parameters", lnmsm_parameters)
    # WeibullMinMuSigma parameter loading
    wms_parameters = ot.WeibullMinMuSigma()
    myStudy.fillObject("wms_parameters", wms_parameters)

    # cleanup
    os.remove(fileName)

    # test nan/inf
    myStudy = ot.Study(fileName)
    point = ot.Point([float(x) for x in ["nan", "inf", "-inf"]])
    myStudy.add("point", point)
    myStudy.save()
    myStudy2 = ot.Study(fileName)
    myStudy2.load()
    point2 = ot.Point()
    myStudy2.fillObject("point", point2)
    for j in range(len(point2)):
        print(
            "j=",
            j,
            "isnormal=",
            m.isfinite(point2[j]),
            "isnan=",
            m.isnan(point2[j]),
            "isinf=",
            m.isinf(point2[j]),
        )
    # cleanup
    os.remove(fileName)

except Exception:
    import os
    import traceback

    traceback.print_exc()
    os._exit(1)