File: t_SymmetricMatrix_lapack.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (68 lines) | stat: -rwxr-xr-x 1,435 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()


matrix1 = ot.SymmetricMatrix(2)
matrix1.setName("matrix1")
matrix1[0, 0] = 1.0
matrix1[1, 0] = 5.0
matrix1[1, 1] = 12.0
print("matrix1=", matrix1)
print("matrix1=")
print(matrix1.__str__())

pt = ot.Point(0)
pt.add(5.0)
pt.add(0.0)
print("pt=", pt)

result = matrix1.solveLinearSystem(pt)
print("result=", result)
#    print "verif. ", matrix1 * result - pt

determinant = matrix1.computeDeterminant()
print("determinant= %.1f" % determinant)

b = ot.Matrix(2, 3)
b[0, 0] = 5.0
b[1, 0] = 0.0
b[0, 1] = 10.0
b[1, 1] = 1.0
b[0, 2] = 15.0
b[1, 2] = 2.0
result2 = ot.Matrix()
result2 = matrix1.solveLinearSystem(b)
print("result2=", result2)
print("result2=")
print(result2.__str__())

ev = matrix1.computeEigenValues()
print("ev=", ev)

ev, evect = matrix1.computeEV()
print("ev=", ev)
print("evect=", repr(evect))
print("evect=")
print(evect.__str__())
maxModule = matrix1.computeLargestEigenValueModule(10, 1e-2)
print("max |ev|=%.6g" % maxModule)

# Check the high dimension determinant computation
matrix3 = ot.SymmetricMatrix(3)
matrix3[0, 0] = 1.0
matrix3[0, 1] = 2.0
matrix3[0, 2] = 3.0
matrix3[1, 1] = 2.5
matrix3[1, 2] = -3.5
matrix3[2, 2] = 2.5

print("matrix3=")
print(matrix3.__str__())
# sign = 0.0
# value = matrix3.computeLogAbsoluteDeterminant(sign)
# print "log(|det|)=", value, ", sign=", sign
value = matrix3.computeDeterminant()
print("det=", value)