File: t_SymmetricMatrix_std.py

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (141 lines) | stat: -rwxr-xr-x 4,451 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#! /usr/bin/env python

import openturns as ot
from openturns.testing import assert_almost_equal

ot.TESTPREAMBLE()

# TEST NUMBER ZERO : DEFAULT CONSTRUCTOR AND STRING CONVERTER
print("test number zero : default constructor and string converter")

# Default constructor
symmetricMatrix0 = ot.SymmetricMatrix()

# String converter
print("symmetricMatrix0 = ", repr(symmetricMatrix0))

# TEST NUMBER ONE : CONSTRUCTOR WITH SIZE, OPERATOR() AND STRING CONVERTER
print("test number one : constructor with size, operator() and string converter")

# Constructor with size
symmetricMatrix1 = ot.SymmetricMatrix(2)

# Check operator() methods
symmetricMatrix1[0, 0] = 1.0
symmetricMatrix1[1, 0] = 2.0
symmetricMatrix1[0, 1] = 3.0
symmetricMatrix1[1, 1] = 4.0

# String converter
print("symmetricMatrix1 = ", repr(symmetricMatrix1))

# TEST NUMBER TWO : COPY CONSTRUCTOR AND STRING CONVERTER
print("test number two : copy constructor and string converter")

# Copy constructor
symmetricMatrix2 = ot.SymmetricMatrix(symmetricMatrix1)

# String converter
print("symmetricMatrix2 = ", repr(symmetricMatrix2))

# TEST NUMBER THREE : GET DIMENSIONS METHODS
print("test number three : get dimensions methods")

# Get dimension methods
print("symmetricMatrix1's nbRows = ", symmetricMatrix1.getNbRows())
print("symmetricMatrix1's nbColumns = ", symmetricMatrix1.getNbColumns())

# TEST NUMBER FIVE : ASSIGNMENT METHOD
print("test number five : assignment method")

# Assignment method
# No sense with python

# TEST NUMBER SIX : TRANSPOSITION METHOD
print("test number six : transposition method")

# Check transpose method
symmetricMatrix4 = symmetricMatrix1.transpose()
print("symmetricMatrix1 transposed = ", repr(symmetricMatrix4))

# TEST NUMBER SEVEN : ADDITION METHOD
print("test number seven : addition method")

# Check addition method : we check the operator and the symmetry of the
# operator, thus testing the comparison operator
sum1 = symmetricMatrix1 + symmetricMatrix4
sum2 = symmetricMatrix4 + symmetricMatrix1
print("sum1 = ", repr(sum1))
print("sum2 = ", repr(sum2))
print("sum1 equals sum2 = ", sum1 == sum2)

# TEST NUMBER EIGHT : SUBTRACTION METHOD
print("test number eight : subtraction method")

# Check subtraction method
diff = symmetricMatrix1 - symmetricMatrix4
print("diff = ", repr(diff))

# TEST NUMBER NINE : MATRIX MULTIPLICATION METHOD
print("test number nine : matrix multiplication method")

# Check multiplication method
prod = symmetricMatrix1 * symmetricMatrix4
print("prod = ", repr(prod))

# TEST NUMBER TEN : MULTIPLICATION WITH A NUMERICAL POINT METHOD
print("test number ten : multiplication with a numerical point method")

# Create the numerical point
pt = ot.Point()
pt.add(1.0)
pt.add(2.0)
print("pt = ", repr(pt))

# Check the product method
ptResult = symmetricMatrix1 * pt
print("ptResult = ", repr(ptResult))

# TEST NUMBER ELEVEN : MULTIPLICATION AND DIVISION BY A NUMERICAL SCALAR
# METHODS
print("test number eleven : multiplication and division by a numerical scalar methods")

# Check the multiplication method
s = 3.0
scalprod1 = symmetricMatrix1 * s
# bug PYTHON scalprod2 = s * symmetricMatrix1
scalprod3 = symmetricMatrix1 * s
print("scalprod1 = ", repr(scalprod1))
# print  "scalprod2 = " , scalprod2
print("scalprod3 = ", repr(scalprod3))
# print  "scalprod1 equals scalprod2 = " , (scalprod1 == scalprod2)
print("scalprod1 equals scalprod3 = ", (scalprod1 == scalprod3))
# print  "scalprod2 equals scalprod3 = " , (scalprod2 == scalprod3)

# Check the division method
scaldiv1 = symmetricMatrix1 / s
scaldiv2 = symmetricMatrix1 / s
print("scaldiv1 = ", repr(scaldiv1))
print("scaldiv2 = ", repr(scaldiv2))
print("scaldiv1 equals scaldiv2 = ", (scaldiv1 == scaldiv2))

# TEST NUMBER TWELVE : ISEMPTY METHOD
print("test number twelve : isEmpty method")

# Check method isEmpty
symmetricMatrix5 = ot.SymmetricMatrix()
symmetricMatrix6 = ot.SymmetricMatrix()
print("symmetricMatrix0 is empty = ", symmetricMatrix0.isEmpty())
print("symmetricMatrix1 is empty = ", symmetricMatrix1.isEmpty())
print("symmetricMatrix5 is empty = ", symmetricMatrix5.isEmpty())

# Check inverse()
symmetricMatrix6 = ot.SymmetricMatrix(
    [[4.0, 2.0, 1.0], [2.0, 5.0, 3.0], [1.0, 3.0, 6.0]]
)
symmetricMatrix7 = symmetricMatrix6.inverse()
inverseReference = ot.SymmetricMatrix(
    [[21.0, -9.0, 1.0], [-9.0, 23.0, -10.0], [1.0, -10.0, 16.0]]
)
inverseReference /= 67.0
assert_almost_equal(symmetricMatrix7, inverseReference)