1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
Distribution class=Trapezoidal name=Trapezoidal dimension=1 a=1 b=1.2 c=3 d=14 h=0.135135
Distribution Trapezoidal(a = 1, b = 1.2, c = 3, d = 14)
Mean= class=Point name=Unnamed dimension=1 values=[5.48108]
Covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.1428]
Elliptical = False
oneRealization= class=Point name=Unnamed dimension=1 values=[6.23752]
Point= class=Point name=Unnamed dimension=1 values=[1.1]
ddf = class=Point name=Unnamed dimension=1 values=[0.675676]
log pdf=-2.694627
pdf =0.067568
cdf=0.003378
ccdf=0.996622
characteristic function= (-0.115059431951+0.0386019620712j)
pdf gradient = class=Point name=Unnamed dimension=4 values=[-0.333272,-0.333272,-0.00456538,-0.00456538]
log-pdf gradient = class=Point name=Unnamed dimension=4 values=[-4.93243,-4.93243,-0.0675676,-0.0675676]
cdf gradient = class=Point name=Unnamed dimension=4 values=[-0.0504474,-0.0166636,-0.000228269,-0.000228269]
quantile= class=Point name=Unnamed dimension=1 values=[11.1469]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.47]
Survival(inverseSurvival)=0.950000
entropy=2.379858
Minimum volume interval= [1.05141, 11.1725]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 3.35999} with f=
MinimumVolumeLevelSetEvaluation(Trapezoidal(a = 1, b = 1.2, c = 3, d = 14))
beta= [0.0347356]
Bilateral confidence interval= [1.285, 11.9826]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 11.1469]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.47, 14]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[5.48108]
standard deviation= class=Point name=Unnamed dimension=1 values=[3.02371]
skewness= class=Point name=Unnamed dimension=1 values=[0.548305]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.39403]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.1428]
parameters= [class=PointWithDescription name=X0 dimension=4 description=[a,b,c,d] values=[1,1.2,3,14]]
Standard representative= Trapezoidal(a = -1, b = -0.969231, c = -0.692308, d = 1)
roughness= [0.101047]
Distribution class=Trapezoidal name=Trapezoidal dimension=1 a=1 b=1 c=3 d=14 h=0.133333
Distribution Trapezoidal(a = 1, b = 1, c = 3, d = 14)
Mean= class=Point name=Unnamed dimension=1 values=[5.42222]
Covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.27728]
Elliptical = False
oneRealization= class=Point name=Unnamed dimension=1 values=[5.89233]
Point= class=Point name=Unnamed dimension=1 values=[1.1]
ddf = class=Point name=Unnamed dimension=1 values=[0]
log pdf=-2.014903
pdf =0.133333
cdf=0.013333
ccdf=0.986667
characteristic function= (-0.108371008362+0.0503646282831j)
quantile= class=Point name=Unnamed dimension=1 values=[11.1277]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.375]
Survival(inverseSurvival)=0.950000
entropy=2.381570
Minimum volume interval= [1, 11.1277]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 3.35769} with f=
MinimumVolumeLevelSetEvaluation(Trapezoidal(a = 1, b = 1, c = 3, d = 14))
beta= [0.0348155]
Bilateral confidence interval= [1.1875, 11.969]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 11.1277]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.375, 14]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[5.42222]
standard deviation= class=Point name=Unnamed dimension=1 values=[3.04586]
skewness= class=Point name=Unnamed dimension=1 values=[0.546649]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.39301]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.27728]
parameters= [class=PointWithDescription name=X0 dimension=4 description=[a,b,c,d] values=[1,1,3,14]]
Standard representative= Trapezoidal(a = -1, b = -1, c = -0.692308, d = 1)
roughness= [0.100741]
Distribution class=Trapezoidal name=Trapezoidal dimension=1 a=1 b=1.2 c=1.2 d=14 h=0.153846
Distribution Trapezoidal(a = 1, b = 1.2, c = 1.2, d = 14)
Mean= class=Point name=Unnamed dimension=1 values=[5.4]
Covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.24667]
Elliptical = False
oneRealization= class=Point name=Unnamed dimension=1 values=[4.72556]
Point= class=Point name=Unnamed dimension=1 values=[1.1]
ddf = class=Point name=Unnamed dimension=1 values=[0.769231]
log pdf=-2.564949
pdf =0.076923
cdf=0.003846
ccdf=0.996154
characteristic function= (-0.1186605461+0.0558853713745j)
quantile= class=Point name=Unnamed dimension=1 values=[11.1156]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.42701]
Survival(inverseSurvival)=0.950000
entropy=2.371802
Minimum volume interval= [1.04472, 11.1378]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 3.36967} with f=
MinimumVolumeLevelSetEvaluation(Trapezoidal(a = 1, b = 1.2, c = 1.2, d = 14))
beta= [0.034401]
Bilateral confidence interval= [1.26265, 11.9604]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 11.1156]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.42701, 14]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[5.4]
standard deviation= class=Point name=Unnamed dimension=1 values=[3.04083]
skewness= class=Point name=Unnamed dimension=1 values=[0.565227]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.4]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.24667]
parameters= [class=PointWithDescription name=X0 dimension=4 description=[a,b,c,d] values=[1,1.2,1.2,14]]
Standard representative= Trapezoidal(a = -1, b = -0.969231, c = -0.969231, d = 1)
roughness= [0.102564]
Distribution class=Trapezoidal name=Trapezoidal dimension=1 a=1 b=1 c=1 d=14 h=0.153846
Distribution Trapezoidal(a = 1, b = 1, c = 1, d = 14)
Mean= class=Point name=Unnamed dimension=1 values=[5.33333]
Covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.38889]
Elliptical = False
oneRealization= class=Point name=Unnamed dimension=1 values=[1.36614]
Point= class=Point name=Unnamed dimension=1 values=[1.1]
ddf = class=Point name=Unnamed dimension=1 values=[-0.0118343]
log pdf=-1.879524
pdf =0.152663
cdf=0.015325
ccdf=0.984675
characteristic function= (-0.110887732511+0.0691917799374j)
quantile= class=Point name=Unnamed dimension=1 values=[11.0931]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.32917]
Survival(inverseSurvival)=0.950000
entropy=2.371802
Minimum volume interval= [1, 11.0931]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 3.36967} with f=
MinimumVolumeLevelSetEvaluation(Trapezoidal(a = 1, b = 1, c = 1, d = 14))
beta= [0.034401]
Bilateral confidence interval= [1.16353, 11.9445]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 11.0931]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.32917, 14]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[5.33333]
standard deviation= class=Point name=Unnamed dimension=1 values=[3.06413]
skewness= class=Point name=Unnamed dimension=1 values=[0.565685]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.4]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.38889]
parameters= [class=PointWithDescription name=X0 dimension=4 description=[a,b,c,d] values=[1,1,1,14]]
Standard representative= Trapezoidal(a = -1, b = -1, c = -1, d = 1)
roughness= [0.102564]
Distribution class=Trapezoidal name=Trapezoidal dimension=1 a=1 b=1.2 c=14 d=14 h=0.0775194
Distribution Trapezoidal(a = 1, b = 1.2, c = 14, d = 14)
Mean= class=Point name=Unnamed dimension=1 values=[7.54987]
Covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[13.8692]
Elliptical = False
oneRealization= class=Point name=Unnamed dimension=1 values=[5.84072]
Point= class=Point name=Unnamed dimension=1 values=[1.1]
ddf = class=Point name=Unnamed dimension=1 values=[0.387597]
log pdf=-3.250374
pdf =0.038760
cdf=0.001938
ccdf=0.998062
characteristic function= (-0.0444405891758+0.0919845543507j)
quantile= class=Point name=Unnamed dimension=1 values=[13.355]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.745]
Survival(inverseSurvival)=0.950000
entropy=2.561103
Minimum volume interval= [1.3725, 13.6275]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 2.55723} with f=
MinimumVolumeLevelSetEvaluation(Trapezoidal(a = 1, b = 1.2, c = 14, d = 14))
beta= [0.0775194]
Bilateral confidence interval= [1.4225, 13.6775]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 13.355]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.745, 14]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[7.54987]
standard deviation= class=Point name=Unnamed dimension=1 values=[3.72413]
skewness= class=Point name=Unnamed dimension=1 values=[-0.000208124]
kurtosis= class=Point name=Unnamed dimension=1 values=[1.80029]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[13.8692]
parameters= [class=PointWithDescription name=X0 dimension=4 description=[a,b,c,d] values=[1,1.2,14,14]]
Standard representative= Trapezoidal(a = -1, b = -0.969231, c = 1, d = 1)
roughness= [0.0773191]
Distribution class=Trapezoidal name=Trapezoidal dimension=1 a=1 b=1 c=14 d=14 h=0.0769231
Distribution Trapezoidal(a = 1, b = 1, c = 14, d = 14)
Mean= class=Point name=Unnamed dimension=1 values=[7.5]
Covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[14.0833]
Elliptical = True
oneRealization= class=Point name=Unnamed dimension=1 values=[10.6537]
Point= class=Point name=Unnamed dimension=1 values=[1.1]
ddf = class=Point name=Unnamed dimension=1 values=[0]
log pdf=-2.564949
pdf =0.076923
cdf=0.007692
ccdf=0.992308
characteristic function= (-0.041125105127+0.0983600726093j)
quantile= class=Point name=Unnamed dimension=1 values=[13.35]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.65]
Survival(inverseSurvival)=0.950000
entropy=2.564949
Minimum volume interval= [1.325, 13.675]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 2.56495} with f=
MinimumVolumeLevelSetEvaluation(Trapezoidal(a = 1, b = 1, c = 14, d = 14))
beta= [0.0769231]
Bilateral confidence interval= [1.325, 13.675]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 13.35]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.65, 14]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[7.5]
standard deviation= class=Point name=Unnamed dimension=1 values=[3.75278]
skewness= class=Point name=Unnamed dimension=1 values=[0]
kurtosis= class=Point name=Unnamed dimension=1 values=[1.8]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[14.0833]
parameters= [class=PointWithDescription name=X0 dimension=4 description=[a,b,c,d] values=[1,1,14,14]]
Standard representative= Trapezoidal(a = -1, b = -1, c = 1, d = 1)
roughness= [0.0769231]
Distribution class=Trapezoidal name=Trapezoidal dimension=1 a=1 b=14 c=14 d=14 h=0.153846
Distribution Trapezoidal(a = 1, b = 14, c = 14, d = 14)
Mean= class=Point name=Unnamed dimension=1 values=[9.66667]
Covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.38889]
Elliptical = False
oneRealization= class=Point name=Unnamed dimension=1 values=[13.4634]
Point= class=Point name=Unnamed dimension=1 values=[1.1]
ddf = class=Point name=Unnamed dimension=1 values=[0.0118343]
log pdf=-6.739337
pdf =0.001183
cdf=0.000059
ccdf=0.999941
characteristic function= (0.0286375222568+0.127528365281j)
quantile= class=Point name=Unnamed dimension=1 values=[13.6708]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[3.90689]
Survival(inverseSurvival)=0.950000
entropy=2.371802
Minimum volume interval= [3.90689, 14]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 3.36967} with f=
MinimumVolumeLevelSetEvaluation(Trapezoidal(a = 1, b = 14, c = 14, d = 14))
beta= [0.034401]
Bilateral confidence interval= [3.05548, 13.8365]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 13.6708]
beta= [0.95]
Unilateral confidence interval (upper tail)= [3.90689, 14]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[9.66667]
standard deviation= class=Point name=Unnamed dimension=1 values=[3.06413]
skewness= class=Point name=Unnamed dimension=1 values=[-0.565685]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.4]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.38889]
parameters= [class=PointWithDescription name=X0 dimension=4 description=[a,b,c,d] values=[1,14,14,14]]
Standard representative= Trapezoidal(a = -1, b = 1, c = 1, d = 1)
roughness= [0.102564]
|