File: t_Trapezoidal_std.expout

package info (click to toggle)
openturns 1.26-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 67,708 kB
  • sloc: cpp: 261,605; python: 67,030; ansic: 4,378; javascript: 406; sh: 185; xml: 164; makefile: 101
file content (262 lines) | stat: -rw-r--r-- 13,571 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
Distribution  class=Trapezoidal name=Trapezoidal dimension=1 a=1 b=1.2 c=3 d=14 h=0.135135
Distribution  Trapezoidal(a = 1, b = 1.2, c = 3, d = 14)
Mean=  class=Point name=Unnamed dimension=1 values=[5.48108]
Covariance=  class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.1428]
Elliptical =  False
oneRealization= class=Point name=Unnamed dimension=1 values=[6.23752]
Point=  class=Point name=Unnamed dimension=1 values=[1.1]
ddf     = class=Point name=Unnamed dimension=1 values=[0.675676]
log pdf=-2.694627
pdf     =0.067568
cdf=0.003378
ccdf=0.996622
characteristic function= (-0.115059431951+0.0386019620712j)
pdf gradient     = class=Point name=Unnamed dimension=4 values=[-0.333272,-0.333272,-0.00456538,-0.00456538]
log-pdf gradient     = class=Point name=Unnamed dimension=4 values=[-4.93243,-4.93243,-0.0675676,-0.0675676]
cdf gradient     = class=Point name=Unnamed dimension=4 values=[-0.0504474,-0.0166636,-0.000228269,-0.000228269]
quantile= class=Point name=Unnamed dimension=1 values=[11.1469]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.47]
Survival(inverseSurvival)=0.950000
entropy=2.379858
Minimum volume interval= [1.05141, 11.1725]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 3.35999} with f=
MinimumVolumeLevelSetEvaluation(Trapezoidal(a = 1, b = 1.2, c = 3, d = 14))
beta= [0.0347356]
Bilateral confidence interval= [1.285, 11.9826]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 11.1469]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.47, 14]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[5.48108]
standard deviation= class=Point name=Unnamed dimension=1 values=[3.02371]
skewness= class=Point name=Unnamed dimension=1 values=[0.548305]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.39403]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.1428]
parameters= [class=PointWithDescription name=X0 dimension=4 description=[a,b,c,d] values=[1,1.2,3,14]]
Standard representative= Trapezoidal(a = -1, b = -0.969231, c = -0.692308, d = 1)
roughness= [0.101047]
Distribution  class=Trapezoidal name=Trapezoidal dimension=1 a=1 b=1 c=3 d=14 h=0.133333
Distribution  Trapezoidal(a = 1, b = 1, c = 3, d = 14)
Mean=  class=Point name=Unnamed dimension=1 values=[5.42222]
Covariance=  class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.27728]
Elliptical =  False
oneRealization= class=Point name=Unnamed dimension=1 values=[5.89233]
Point=  class=Point name=Unnamed dimension=1 values=[1.1]
ddf     = class=Point name=Unnamed dimension=1 values=[0]
log pdf=-2.014903
pdf     =0.133333
cdf=0.013333
ccdf=0.986667
characteristic function= (-0.108371008362+0.0503646282831j)
quantile= class=Point name=Unnamed dimension=1 values=[11.1277]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.375]
Survival(inverseSurvival)=0.950000
entropy=2.381570
Minimum volume interval= [1, 11.1277]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 3.35769} with f=
MinimumVolumeLevelSetEvaluation(Trapezoidal(a = 1, b = 1, c = 3, d = 14))
beta= [0.0348155]
Bilateral confidence interval= [1.1875, 11.969]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 11.1277]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.375, 14]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[5.42222]
standard deviation= class=Point name=Unnamed dimension=1 values=[3.04586]
skewness= class=Point name=Unnamed dimension=1 values=[0.546649]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.39301]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.27728]
parameters= [class=PointWithDescription name=X0 dimension=4 description=[a,b,c,d] values=[1,1,3,14]]
Standard representative= Trapezoidal(a = -1, b = -1, c = -0.692308, d = 1)
roughness= [0.100741]
Distribution  class=Trapezoidal name=Trapezoidal dimension=1 a=1 b=1.2 c=1.2 d=14 h=0.153846
Distribution  Trapezoidal(a = 1, b = 1.2, c = 1.2, d = 14)
Mean=  class=Point name=Unnamed dimension=1 values=[5.4]
Covariance=  class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.24667]
Elliptical =  False
oneRealization= class=Point name=Unnamed dimension=1 values=[4.72556]
Point=  class=Point name=Unnamed dimension=1 values=[1.1]
ddf     = class=Point name=Unnamed dimension=1 values=[0.769231]
log pdf=-2.564949
pdf     =0.076923
cdf=0.003846
ccdf=0.996154
characteristic function= (-0.1186605461+0.0558853713745j)
quantile= class=Point name=Unnamed dimension=1 values=[11.1156]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.42701]
Survival(inverseSurvival)=0.950000
entropy=2.371802
Minimum volume interval= [1.04472, 11.1378]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 3.36967} with f=
MinimumVolumeLevelSetEvaluation(Trapezoidal(a = 1, b = 1.2, c = 1.2, d = 14))
beta= [0.034401]
Bilateral confidence interval= [1.26265, 11.9604]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 11.1156]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.42701, 14]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[5.4]
standard deviation= class=Point name=Unnamed dimension=1 values=[3.04083]
skewness= class=Point name=Unnamed dimension=1 values=[0.565227]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.4]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.24667]
parameters= [class=PointWithDescription name=X0 dimension=4 description=[a,b,c,d] values=[1,1.2,1.2,14]]
Standard representative= Trapezoidal(a = -1, b = -0.969231, c = -0.969231, d = 1)
roughness= [0.102564]
Distribution  class=Trapezoidal name=Trapezoidal dimension=1 a=1 b=1 c=1 d=14 h=0.153846
Distribution  Trapezoidal(a = 1, b = 1, c = 1, d = 14)
Mean=  class=Point name=Unnamed dimension=1 values=[5.33333]
Covariance=  class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.38889]
Elliptical =  False
oneRealization= class=Point name=Unnamed dimension=1 values=[1.36614]
Point=  class=Point name=Unnamed dimension=1 values=[1.1]
ddf     = class=Point name=Unnamed dimension=1 values=[-0.0118343]
log pdf=-1.879524
pdf     =0.152663
cdf=0.015325
ccdf=0.984675
characteristic function= (-0.110887732511+0.0691917799374j)
quantile= class=Point name=Unnamed dimension=1 values=[11.0931]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.32917]
Survival(inverseSurvival)=0.950000
entropy=2.371802
Minimum volume interval= [1, 11.0931]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 3.36967} with f=
MinimumVolumeLevelSetEvaluation(Trapezoidal(a = 1, b = 1, c = 1, d = 14))
beta= [0.034401]
Bilateral confidence interval= [1.16353, 11.9445]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 11.0931]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.32917, 14]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[5.33333]
standard deviation= class=Point name=Unnamed dimension=1 values=[3.06413]
skewness= class=Point name=Unnamed dimension=1 values=[0.565685]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.4]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.38889]
parameters= [class=PointWithDescription name=X0 dimension=4 description=[a,b,c,d] values=[1,1,1,14]]
Standard representative= Trapezoidal(a = -1, b = -1, c = -1, d = 1)
roughness= [0.102564]
Distribution  class=Trapezoidal name=Trapezoidal dimension=1 a=1 b=1.2 c=14 d=14 h=0.0775194
Distribution  Trapezoidal(a = 1, b = 1.2, c = 14, d = 14)
Mean=  class=Point name=Unnamed dimension=1 values=[7.54987]
Covariance=  class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[13.8692]
Elliptical =  False
oneRealization= class=Point name=Unnamed dimension=1 values=[5.84072]
Point=  class=Point name=Unnamed dimension=1 values=[1.1]
ddf     = class=Point name=Unnamed dimension=1 values=[0.387597]
log pdf=-3.250374
pdf     =0.038760
cdf=0.001938
ccdf=0.998062
characteristic function= (-0.0444405891758+0.0919845543507j)
quantile= class=Point name=Unnamed dimension=1 values=[13.355]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.745]
Survival(inverseSurvival)=0.950000
entropy=2.561103
Minimum volume interval= [1.3725, 13.6275]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 2.55723} with f=
MinimumVolumeLevelSetEvaluation(Trapezoidal(a = 1, b = 1.2, c = 14, d = 14))
beta= [0.0775194]
Bilateral confidence interval= [1.4225, 13.6775]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 13.355]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.745, 14]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[7.54987]
standard deviation= class=Point name=Unnamed dimension=1 values=[3.72413]
skewness= class=Point name=Unnamed dimension=1 values=[-0.000208124]
kurtosis= class=Point name=Unnamed dimension=1 values=[1.80029]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[13.8692]
parameters= [class=PointWithDescription name=X0 dimension=4 description=[a,b,c,d] values=[1,1.2,14,14]]
Standard representative= Trapezoidal(a = -1, b = -0.969231, c = 1, d = 1)
roughness= [0.0773191]
Distribution  class=Trapezoidal name=Trapezoidal dimension=1 a=1 b=1 c=14 d=14 h=0.0769231
Distribution  Trapezoidal(a = 1, b = 1, c = 14, d = 14)
Mean=  class=Point name=Unnamed dimension=1 values=[7.5]
Covariance=  class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[14.0833]
Elliptical =  True
oneRealization= class=Point name=Unnamed dimension=1 values=[10.6537]
Point=  class=Point name=Unnamed dimension=1 values=[1.1]
ddf     = class=Point name=Unnamed dimension=1 values=[0]
log pdf=-2.564949
pdf     =0.076923
cdf=0.007692
ccdf=0.992308
characteristic function= (-0.041125105127+0.0983600726093j)
quantile= class=Point name=Unnamed dimension=1 values=[13.35]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.65]
Survival(inverseSurvival)=0.950000
entropy=2.564949
Minimum volume interval= [1.325, 13.675]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 2.56495} with f=
MinimumVolumeLevelSetEvaluation(Trapezoidal(a = 1, b = 1, c = 14, d = 14))
beta= [0.0769231]
Bilateral confidence interval= [1.325, 13.675]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 13.35]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.65, 14]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[7.5]
standard deviation= class=Point name=Unnamed dimension=1 values=[3.75278]
skewness= class=Point name=Unnamed dimension=1 values=[0]
kurtosis= class=Point name=Unnamed dimension=1 values=[1.8]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[14.0833]
parameters= [class=PointWithDescription name=X0 dimension=4 description=[a,b,c,d] values=[1,1,14,14]]
Standard representative= Trapezoidal(a = -1, b = -1, c = 1, d = 1)
roughness= [0.0769231]
Distribution  class=Trapezoidal name=Trapezoidal dimension=1 a=1 b=14 c=14 d=14 h=0.153846
Distribution  Trapezoidal(a = 1, b = 14, c = 14, d = 14)
Mean=  class=Point name=Unnamed dimension=1 values=[9.66667]
Covariance=  class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.38889]
Elliptical =  False
oneRealization= class=Point name=Unnamed dimension=1 values=[13.4634]
Point=  class=Point name=Unnamed dimension=1 values=[1.1]
ddf     = class=Point name=Unnamed dimension=1 values=[0.0118343]
log pdf=-6.739337
pdf     =0.001183
cdf=0.000059
ccdf=0.999941
characteristic function= (0.0286375222568+0.127528365281j)
quantile= class=Point name=Unnamed dimension=1 values=[13.6708]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[3.90689]
Survival(inverseSurvival)=0.950000
entropy=2.371802
Minimum volume interval= [3.90689, 14]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 3.36967} with f=
MinimumVolumeLevelSetEvaluation(Trapezoidal(a = 1, b = 14, c = 14, d = 14))
beta= [0.034401]
Bilateral confidence interval= [3.05548, 13.8365]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 13.6708]
beta= [0.95]
Unilateral confidence interval (upper tail)= [3.90689, 14]
beta= [0.95]
mean= class=Point name=Unnamed dimension=1 values=[9.66667]
standard deviation= class=Point name=Unnamed dimension=1 values=[3.06413]
skewness= class=Point name=Unnamed dimension=1 values=[-0.565685]
kurtosis= class=Point name=Unnamed dimension=1 values=[2.4]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[9.38889]
parameters= [class=PointWithDescription name=X0 dimension=4 description=[a,b,c,d] values=[1,14,14,14]]
Standard representative= Trapezoidal(a = -1, b = 1, c = 1, d = 1)
roughness= [0.102564]