1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
Distribution TruncatedDistribution(Normal(mu = 2, sigma = 1.5), bounds = [1, 4])
Elliptical = False
Continuous = True
oneRealization= class=Point name=Unnamed dimension=1 values=[2.9123]
oneSample first= class=Point name=Unnamed dimension=1 values=[1.3426] last= class=Point name=Unnamed dimension=1 values=[3.87446]
mean= class=Point name=Unnamed dimension=1 values=[2.34616]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.63794]
Point= class=Point name=Unnamed dimension=1 values=[1.5]
ddf = class=Point name=Unnamed dimension=1 values=[0.0851881]
ddf (ref)= class=Point name=Unnamed dimension=1 values=[0.0851881]
pdf =0.383346
pdf (ref)=0.383346
cdf=0.178195
ccdf=0.821805
cdf (ref)=0.178195
pdf gradient = class=Point name=Unnamed dimension=4 values=[-0.145716,-0.0590839,0.124394,-0.0638662]
cdf gradient = class=Point name=Unnamed dimension=4 values=[-0.0869866,-0.0104158,-0.266672,-0.0296876]
quantile= class=Point name=Unnamed dimension=1 values=[3.73264]
quantile= class=Point name=Unnamed dimension=1 values=[3.73264]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.14928]
Survival(inverseSurvival)=0.950000
entropy=1.074411
Minimum volume interval= [1, 3.7326]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 1.57038} with f=
MinimumVolumeLevelSetEvaluation(TruncatedDistribution(Normal(mu = 2, sigma = 1.5), bounds = [1, 4]))
beta= [0.207966]
Bilateral confidence interval= [1.07578, 3.85894]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 3.73264]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.14928, 4]
beta= [0.95]
mean = class=Point name=Unnamed dimension=1 values=[2.35526]
mean (ref)= class=Point name=Unnamed dimension=1 values=[2.35526]
standard deviation = class=Point name=Unnamed dimension=1 values=[0.802475]
standard deviation (ref)= class=Point name=Unnamed dimension=1 values=[0.802475]
skewness = class=Point name=Unnamed dimension=1 values=[0.190048]
skewness (ref)= class=Point name=Unnamed dimension=1 values=[0.190048]
kurtosis = class=Point name=Unnamed dimension=1 values=[1.9933]
kurtosis (ref)= class=Point name=Unnamed dimension=1 values=[1.9933]
covariance = class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.643966]
covariance (ref)= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.643966]
parameters = [class=PointWithDescription name=X0 dimension=4 description=[mu_0,sigma_0,lowerBound,upperBound] values=[2,1.5,1,4]]
parameters (ref)= [class=PointWithDescription name=X0 dimension=4 description=[mu,sigma,a,b] values=[2,1.5,1,4]]
parameter = class=Point name=Unnamed dimension=4 values=[2,1.5,1,4]
parameter desc = [mu_0,sigma_0,lowerBound,upperBound]
marginal 0 = class=TruncatedNormal name=TruncatedNormal dimension=1 mu=2 sigma=1.5 a=1 b=4
Standard representative= TruncatedNormal(mu = -0.333333, sigma = 1, a = -1, b = 1)
conditional PDF=0.394038
sequential conditional PDF=[0.394038]
conditional CDF=0.519761
sequential conditional CDF=[0.519761]
Distribution TruncatedDistribution(Normal(mu = 2, sigma = 1.5), bounds = [1, (13.4759) +inf[)
Elliptical = False
Continuous = True
oneRealization= class=Point name=Unnamed dimension=1 values=[2.59149]
oneSample first= class=Point name=Unnamed dimension=1 values=[3.14189] last= class=Point name=Unnamed dimension=1 values=[2.75486]
mean= class=Point name=Unnamed dimension=1 values=[2.6524]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.22045]
Point= class=Point name=Unnamed dimension=1 values=[1.5]
ddf = class=Point name=Unnamed dimension=1 values=[0.0747934]
ddf (ref)= class=Point name=Unnamed dimension=1 values=[0.0747934]
pdf =0.336570
pdf (ref)=0.336570
cdf=0.156452
ccdf=0.843548
cdf (ref)=0.156452
pdf gradient = class=Point name=Unnamed dimension=3 values=[-0.170682,-0.135523,0.0958891]
cdf gradient = class=Point name=Unnamed dimension=3 values=[-0.0962429,-0.0480282,-0.240327]
quantile= class=Point name=Unnamed dimension=1 values=[4.67299]
quantile= class=Point name=Unnamed dimension=1 values=[4.67299]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.16934]
Survival(inverseSurvival)=0.950000
entropy=1.390942
Minimum volume interval= [1, 4.673]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 2.62114} with f=
MinimumVolumeLevelSetEvaluation(TruncatedDistribution(Normal(mu = 2, sigma = 1.5), bounds = [1, (13.4759) +inf[))
beta= [0.0727201]
Bilateral confidence interval= [1.08613, 5.12246]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 4.67299]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.16934, 13.4759]
beta= [0.95]
mean = class=Point name=Unnamed dimension=1 values=[2.64103]
mean (ref)= class=Point name=Unnamed dimension=1 values=[2.64103]
standard deviation = class=Point name=Unnamed dimension=1 values=[1.09456]
standard deviation (ref)= class=Point name=Unnamed dimension=1 values=[1.09456]
skewness = class=Point name=Unnamed dimension=1 values=[0.730758]
skewness (ref)= class=Point name=Unnamed dimension=1 values=[0.730758]
kurtosis = class=Point name=Unnamed dimension=1 values=[3.23251]
kurtosis (ref)= class=Point name=Unnamed dimension=1 values=[3.23251]
covariance = class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.19806]
covariance (ref)= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.19806]
parameters = [class=PointWithDescription name=X0 dimension=3 description=[mu_0,sigma_0,lowerBound] values=[2,1.5,1]]
parameters (ref)= [class=PointWithDescription name=X0 dimension=4 description=[mu,sigma,a,b] values=[2,1.5,1,200]]
parameter = class=Point name=Unnamed dimension=3 values=[2,1.5,1]
parameter desc = [mu_0,sigma_0,lowerBound]
marginal 0 = class=TruncatedNormal name=TruncatedNormal dimension=1 mu=2 sigma=1.5 a=1 b=13.4759
Standard representative= TruncatedNormal(mu = -0.98995, sigma = 0.0150754, a = -1, b = 1)
conditional PDF=0.324748
sequential conditional PDF=[0.324748]
conditional CDF=0.552430
sequential conditional CDF=[0.55243]
Distribution TruncatedDistribution(Normal(mu = 2, sigma = 1.5), bounds = ]-inf (-9.47594), 4])
Elliptical = False
Continuous = True
oneRealization= class=Point name=Unnamed dimension=1 values=[2.45549]
oneSample first= class=Point name=Unnamed dimension=1 values=[0.632917] last= class=Point name=Unnamed dimension=1 values=[0.368086]
mean= class=Point name=Unnamed dimension=1 values=[1.71713]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.67027]
Point= class=Point name=Unnamed dimension=1 values=[1.5]
ddf = class=Point name=Unnamed dimension=1 values=[0.0615199]
ddf (ref)= class=Point name=Unnamed dimension=1 values=[0.0615199]
pdf =0.276840
pdf (ref)=0.276840
cdf=0.406521
ccdf=0.593479
cdf (ref)=0.406521
pdf gradient = class=Point name=Unnamed dimension=3 values=[-0.0282122,-0.119643,-0.0333077]
cdf gradient = class=Point name=Unnamed dimension=3 values=[-0.22793,0.157493,-0.0489101]
quantile= class=Point name=Unnamed dimension=1 values=[3.64324]
quantile= class=Point name=Unnamed dimension=1 values=[3.64324]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[-0.53617]
Survival(inverseSurvival)=0.950000
entropy=1.608447
Minimum volume interval= [-0.53617, 4]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 2.65813} with f=
MinimumVolumeLevelSetEvaluation(TruncatedDistribution(Normal(mu = 2, sigma = 1.5), bounds = ]-inf (-9.47594), 4]))
beta= [0.0700792]
Bilateral confidence interval= [-1.00085, 3.80883]
beta= [0.95]
Unilateral confidence interval (lower tail)= [-9.47594, 3.64324]
beta= [0.95]
Unilateral confidence interval (upper tail)= [-0.53617, 4]
beta= [0.95]
mean = class=Point name=Unnamed dimension=1 values=[1.72929]
mean (ref)= class=Point name=Unnamed dimension=1 values=[1.72929]
standard deviation = class=Point name=Unnamed dimension=1 values=[1.27879]
standard deviation (ref)= class=Point name=Unnamed dimension=1 values=[1.27879]
skewness = class=Point name=Unnamed dimension=1 values=[-0.455767]
skewness (ref)= class=Point name=Unnamed dimension=1 values=[-0.455767]
kurtosis = class=Point name=Unnamed dimension=1 values=[2.84601]
kurtosis (ref)= class=Point name=Unnamed dimension=1 values=[2.84601]
covariance = class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.6353]
covariance (ref)= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.6353]
parameters = [class=PointWithDescription name=X0 dimension=3 description=[mu_0,sigma_0,upperBound] values=[2,1.5,4]]
parameters (ref)= [class=PointWithDescription name=X0 dimension=4 description=[mu,sigma,a,b] values=[2,1.5,-200,4]]
parameter = class=Point name=Unnamed dimension=3 values=[2,1.5,4]
parameter desc = [mu_0,sigma_0,upperBound]
marginal 0 = class=TruncatedNormal name=TruncatedNormal dimension=1 mu=2 sigma=1.5 a=-9.47594 b=4
Standard representative= TruncatedNormal(mu = 0.980392, sigma = 0.0147059, a = -1, b = 1)
conditional PDF=0.287928
sequential conditional PDF=[0.287928]
conditional CDF=0.471387
sequential conditional CDF=[0.471387]
Distribution TruncatedDistribution(Normal(mu = 2, sigma = 1.5), bounds = [1, 4])
Elliptical = False
Continuous = True
oneRealization= class=Point name=Unnamed dimension=1 values=[3.42681]
oneSample first= class=Point name=Unnamed dimension=1 values=[2.40981] last= class=Point name=Unnamed dimension=1 values=[3.42199]
mean= class=Point name=Unnamed dimension=1 values=[2.35555]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.641586]
Point= class=Point name=Unnamed dimension=1 values=[1.5]
ddf = class=Point name=Unnamed dimension=1 values=[0.0851881]
ddf (ref)= class=Point name=Unnamed dimension=1 values=[0.0851881]
pdf =0.383346
pdf (ref)=0.383346
cdf=0.178195
ccdf=0.821805
cdf (ref)=0.178195
pdf gradient = class=Point name=Unnamed dimension=4 values=[-0.145716,-0.0590839,0.124394,-0.0638662]
cdf gradient = class=Point name=Unnamed dimension=4 values=[-0.0869866,-0.0104158,-0.266672,-0.0296876]
quantile= class=Point name=Unnamed dimension=1 values=[3.73264]
quantile= class=Point name=Unnamed dimension=1 values=[3.73264]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[1.14928]
Survival(inverseSurvival)=0.950000
entropy=1.074411
Minimum volume interval= [1, 3.7326]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 1.57038} with f=
MinimumVolumeLevelSetEvaluation(TruncatedDistribution(Normal(mu = 2, sigma = 1.5), bounds = [1, 4]))
beta= [0.207966]
Bilateral confidence interval= [1.07578, 3.85894]
beta= [0.95]
Unilateral confidence interval (lower tail)= [1, 3.73264]
beta= [0.95]
Unilateral confidence interval (upper tail)= [1.14928, 4]
beta= [0.95]
mean = class=Point name=Unnamed dimension=1 values=[2.35526]
mean (ref)= class=Point name=Unnamed dimension=1 values=[2.35526]
standard deviation = class=Point name=Unnamed dimension=1 values=[0.802475]
standard deviation (ref)= class=Point name=Unnamed dimension=1 values=[0.802475]
skewness = class=Point name=Unnamed dimension=1 values=[0.190048]
skewness (ref)= class=Point name=Unnamed dimension=1 values=[0.190048]
kurtosis = class=Point name=Unnamed dimension=1 values=[1.9933]
kurtosis (ref)= class=Point name=Unnamed dimension=1 values=[1.9933]
covariance = class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.643966]
covariance (ref)= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.643966]
parameters = [class=PointWithDescription name=X0 dimension=4 description=[mu_0,sigma_0,lowerBound,upperBound] values=[2,1.5,1,4]]
parameters (ref)= [class=PointWithDescription name=X0 dimension=4 description=[mu,sigma,a,b] values=[2,1.5,1,4]]
parameter = class=Point name=Unnamed dimension=4 values=[2,1.5,1,4]
parameter desc = [mu_0,sigma_0,lowerBound,upperBound]
marginal 0 = class=TruncatedNormal name=TruncatedNormal dimension=1 mu=2 sigma=1.5 a=1 b=4
Standard representative= TruncatedNormal(mu = -0.333333, sigma = 1, a = -1, b = 1)
conditional PDF=0.394038
sequential conditional PDF=[0.394038]
conditional CDF=0.519761
sequential conditional CDF=[0.519761]
Distribution TruncatedDistribution(Normal(mu = [0,0], sigma = [1,1], R = [[ 1 0 ]
[ 0 1 ]]), bounds = [-0.5, 2]
[-0.5, 2])
Elliptical = False
Continuous = True
oneRealization= class=Point name=Unnamed dimension=2 values=[0.394328,0.761261]
oneSample first= class=Point name=Unnamed dimension=2 values=[-0.255554,0.136819] last= class=Point name=Unnamed dimension=2 values=[1.95356,-0.095957]
mean= class=Point name=Unnamed dimension=2 values=[0.440783,0.449352]
covariance= class=CovarianceMatrix dimension=2 implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[0.375687,0.000808423,0.000808423,0.37764]
Point= class=Point name=Unnamed dimension=2 values=[1.5,1.5]
ddf = class=Point name=Unnamed dimension=2 values=[-0.0562691,-0.0562691]
ddf (ref)= class=Point name=Unnamed dimension=2 values=[-0.0251622,-0.0251622]
pdf =0.037513
pdf (ref)=0.016775
cdf=0.872574
ccdf=0.127426
cdf (ref)=0.870849
pdf gradient = class=Point name=Unnamed dimension=9 values=[0.039548,0.0628233,0.039548,0.0628233,0.0844037,0.0197498,0.0197498,-0.00302873,-0.00302873]
cdf gradient = class=Point name=Unnamed dimension=9 values=[-0.07807,-0.146682,-0.07807,-0.146682,0,-0.0324012,-0.0324012,-0.0704505,-0.0704505]
quantile= class=Point name=Unnamed dimension=2 values=[1.75438,1.75438]
quantile= class=Point name=Unnamed dimension=2 values=[1.95451,1.95451]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=2 values=[-0.452458,-0.452458]
Survival(inverseSurvival)=0.950000
entropy=1.608356
mean = class=Point name=Unnamed dimension=2 values=[0.445744,0.445744]
mean (ref)= class=Point name=Unnamed dimension=2 values=[0,0]
standard deviation = class=Point name=Unnamed dimension=2 values=[0.613672,0.613672]
standard deviation (ref)= class=Point name=Unnamed dimension=2 values=[1,1]
skewness = class=Point name=Unnamed dimension=2 values=[0.467305,0.467305]
skewness (ref)= class=Point name=Unnamed dimension=2 values=[0,0]
kurtosis = class=Point name=Unnamed dimension=2 values=[2.34902,2.34902]
kurtosis (ref)= class=Point name=Unnamed dimension=2 values=[3,3]
covariance = class=CovarianceMatrix dimension=2 implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[0.376594,0,0,0.376594]
covariance (ref)= class=CovarianceMatrix dimension=2 implementation=class=MatrixImplementation name=Unnamed rows=2 columns=2 values=[1,0,0,1]
parameters = [class=PointWithDescription name=X0 dimension=9 description=[mu_0,sigma_0,mu_1,sigma_1,R_1_0,lowerBound_0,lowerBound_1,upperBound_0,upperBound_1] values=[0,1,0,1,0,-0.5,-0.5,2,2]]
parameters (ref)= [class=PointWithDescription name=X0 dimension=2 description=[mu_0,sigma_0] values=[0,1],class=PointWithDescription name=X1 dimension=2 description=[mu_1,sigma_1] values=[0,1],class=PointWithDescription name=dependence dimension=1 description=[R_1_0] values=[0]]
parameter = class=Point name=Unnamed dimension=9 values=[0,1,0,1,0,-0.5,-0.5,2,2]
parameter desc = [mu_0,sigma_0,mu_1,sigma_1,R_1_0,lowerBound_0,lowerBound_1,upperBound_0,upperBound_1]
marginal 0 = class=TruncatedDistribution name=TruncatedDistribution distribution=class=Normal name=Normal dimension=1 mean=class=Point name=Unnamed dimension=1 values=[0] sigma=class=Point name=Unnamed dimension=1 values=[1] correlationMatrix=class=CorrelationMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1] bounds=class=Interval name=Unnamed dimension=1 lower bound=class=Point name=Unnamed dimension=1 values=[-0.5] upper bound=class=Point name=Unnamed dimension=1 values=[2] finite lower bound=[1] finite upper bound=[1] thresholdRealization=0.5
Standard representative= Normal(mu = [0,0], sigma = [1,1], R = [[ 1 0 ]
[ 0 1 ]])
conditional PDF=0.540165
sequential conditional PDF=[0.540165,0.540165]
conditional CDF=0.543689
sequential conditional CDF=[0.543689,0.543689]
Distribution TruncatedDistribution(WeibullMin(beta = 2, alpha = 3, gamma = 0), bounds = [0, (6.36519) +inf[)
Elliptical = False
Continuous = True
oneRealization= class=Point name=Unnamed dimension=1 values=[2.23016]
oneSample first= class=Point name=Unnamed dimension=1 values=[0.847165] last= class=Point name=Unnamed dimension=1 values=[2.09176]
mean= class=Point name=Unnamed dimension=1 values=[1.78206]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.41974]
Point= class=Point name=Unnamed dimension=1 values=[1.5]
ddf = class=Point name=Unnamed dimension=1 values=[0.270908]
ddf (ref)= class=Point name=Unnamed dimension=1 values=[0.270908]
pdf =0.553345
pdf (ref)=0.553345
cdf=0.344184
ccdf=0.655816
cdf (ref)=0.344184
pdf gradient = class=Point name=Unnamed dimension=4 values=[-0.479854,0.0924181,-0.270908,0]
cdf gradient = class=Point name=Unnamed dimension=4 values=[-0.415009,-0.0795937,-0.553345,0]
quantile= class=Point name=Unnamed dimension=1 values=[2.88313]
quantile= class=Point name=Unnamed dimension=1 values=[2.88313]
cdf(quantile)=0.950000
InverseSurvival= class=Point name=Unnamed dimension=1 values=[0.743105]
Survival(inverseSurvival)=0.950000
entropy=0.979345
Minimum volume interval= [0.53717, 3.0308]
threshold= [0.95]
Minimum volume level set= {x | f(x) <= 2.24308} with f=
MinimumVolumeLevelSetEvaluation(TruncatedDistribution(WeibullMin(beta = 2, alpha = 3, gamma = 0), bounds = [0, (6.36519) +inf[))
beta= [0.106131]
Bilateral confidence interval= [0.587271, 3.09026]
beta= [0.95]
Unilateral confidence interval (lower tail)= [0, 2.88313]
beta= [0.95]
Unilateral confidence interval (upper tail)= [0.743105, 6.36519]
beta= [0.95]
mean = class=Point name=Unnamed dimension=1 values=[1.78596]
mean (ref)= class=Point name=Unnamed dimension=1 values=[1.78596]
standard deviation = class=Point name=Unnamed dimension=1 values=[0.649101]
standard deviation (ref)= class=Point name=Unnamed dimension=1 values=[0.649101]
skewness = class=Point name=Unnamed dimension=1 values=[0.168103]
skewness (ref)= class=Point name=Unnamed dimension=1 values=[0.168103]
kurtosis = class=Point name=Unnamed dimension=1 values=[2.72946]
kurtosis (ref)= class=Point name=Unnamed dimension=1 values=[2.72946]
covariance = class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.421332]
covariance (ref)= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.421332]
parameters = [class=PointWithDescription name=X0 dimension=4 description=[beta,alpha,gamma,lowerBound] values=[2,3,0,0]]
parameters (ref)= [class=PointWithDescription name=X0 dimension=3 description=[beta,alpha,gamma] values=[2,3,0]]
parameter = class=Point name=Unnamed dimension=4 values=[2,3,0,0]
parameter desc = [beta,alpha,gamma,lowerBound]
marginal 0 = class=WeibullMin name=WeibullMin dimension=1 beta=2 alpha=3 gamma=0
Standard representative= WeibullMin(beta = 1, alpha = 3, gamma = 0)
conditional PDF=0.586847
sequential conditional PDF=[0.586847]
conditional CDF=0.509374
sequential conditional CDF=[0.509374]
d= TruncatedDistribution(Normal(mu = 1, sigma = 2), bounds = [-1, 4]) simplified= TruncatedNormal(mu = 1, sigma = 2, a = -1, b = 4)
d= TruncatedDistribution(Uniform(a = 1, b = 2), bounds = [0.2, 2.4]) simplified= Uniform(a = 1, b = 2)
d= TruncatedDistribution(Exponential(lambda = 1, gamma = 2), bounds = [2.5, 65]) simplified= Exponential(lambda = 1, gamma = 2.5)
d= TruncatedDistribution(TruncatedDistribution(WeibullMin(beta = 1, alpha = 1, gamma = 0), bounds = [1.5, 7.8]), bounds = [2.5, 6]) simplified= TruncatedDistribution(WeibullMin(beta = 1, alpha = 1, gamma = 0), bounds = [2.5, 6])
d= TruncatedDistribution(Beta(alpha = 1.5, beta = 6.3, a = -1, b = 2), bounds = [-2.5, 6]) simplified= Beta(alpha = 1.5, beta = 6.3, a = -1, b = 2)
d= TruncatedDistribution(JointDistribution(Normal(mu = 0, sigma = 1), Normal(mu = 0, sigma = 1), IndependentCopula(dimension = 2)), bounds = [0, 1]
[0, 1]) simplified= JointDistribution(TruncatedDistribution(Normal(mu = 0, sigma = 1), bounds = [0, 1]), TruncatedDistribution(Normal(mu = 0, sigma = 1), bounds = [0, 1]), IndependentCopula(dimension = 2))
d= TruncatedDistribution(BlockIndependentDistribution(Normal(mu = [0,0], sigma = [1,1], R = [[ 1 0 ]
[ 0 1 ]]), Normal(mu = [0,0], sigma = [1,1], R = [[ 1 0 ]
[ 0 1 ]])), bounds = [0, 1]
[0, 1]
[0, 1]
[0, 1]) simplified= BlockIndependentDistribution(TruncatedDistribution(Normal(mu = [0,0], sigma = [1,1], R = [[ 1 0 ]
[ 0 1 ]]), bounds = [0, 1]
[0, 1]), TruncatedDistribution(Normal(mu = [0,0], sigma = [1,1], R = [[ 1 0 ]
[ 0 1 ]]), bounds = [0, 1]
[0, 1]))
d= TruncatedDistribution(BlockIndependentCopula(NormalCopula(R = [[ 1 0 ]
[ 0 1 ]]), NormalCopula(R = [[ 1 0 ]
[ 0 1 ]])), bounds = [0, 1]
[0, 1]
[0, 1]
[0, 1]) simplified= BlockIndependentDistribution(TruncatedDistribution(NormalCopula(R = [[ 1 0 ]
[ 0 1 ]]), bounds = [0, 1]
[0, 1]), TruncatedDistribution(NormalCopula(R = [[ 1 0 ]
[ 0 1 ]]), bounds = [0, 1]
[0, 1]))
d= TruncatedDistribution(Dirichlet(theta = [0.7,0.3]), bounds = [0.2, 2.4]) simplified= Beta(alpha = 0.7, beta = 0.3, a = 0.2, b = 1)
after setbounds q@0.9= [29.628]
proba=0.001382
q@0.1= [0.425]
|