1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# Instantiate one distribution object
distribution = ot.UniformOrderStatistics(4)
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)
# Define a point
point = [0.1, 0.15, 0.25, 0.45]
print("Point= ", point)
# Show PDF and CDF of point
DDF = distribution.computeDDF(point)
print("ddf =", DDF)
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.5e" % LPDF)
PDF = distribution.computePDF(point)
print("pdf =%.5e" % PDF)
CDF = distribution.computeCDF(point)
print("cdf =%.5e" % CDF)
# Too expensive for a test
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf =%.5e" % CCDF)
Survival = distribution.computeSurvivalFunction(point)
print("survival=%.5e" % Survival)
InverseSurvival = distribution.computeInverseSurvivalFunction(0.95)
print("Inverse survival=", InverseSurvival)
print(
"Survival(inverse survival)=%.5e"
% distribution.computeSurvivalFunction(InverseSurvival)
)
quantile = distribution.computeQuantile(0.95)
print("quantile=", quantile)
print("cdf(quantile)=%.5e" % distribution.computeCDF(quantile))
mean = distribution.getMean()
print("mean=", mean)
#
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", standardDeviation)
skewness = distribution.getSkewness()
print("skewness=", skewness)
kurtosis = distribution.getKurtosis()
print("kurtosis=", kurtosis)
covariance = distribution.getCovariance()
print("covariance=", covariance)
correlation = distribution.getCorrelation()
print("correlation=", correlation)
# Too slow for a test
# spearman = distribution.getSpearmanCorrelation()
# print("spearman=", spearman)
# kendall = distribution.getKendallTau()
# print("kendall=", kendall)
parameters = distribution.getParametersCollection()
print("parameters=", parameters)
print("Standard representative=", distribution.getStandardRepresentative())
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipCorrelation()
validation.skipMoments()
validation.run()
|